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1 はじめに

圏論は代数学でいう代数と準同型写像を扱う代数で、プログラミングで言えば型と関数の理論と呼ぶことが

できる。どちらも既存の理論のモデル化であるが、圏論では「対象」が内部でどのように構成されるかではな

く、「対象」が外部に対してどのように振る舞うかを重視する傾向にある。それによって圏論は抽象化能力に

優れており、数学にとどまらず様々な分野に応用されている。当然抽象的なだけではなく圏論は体系的で単純

な理論である。圏論に登場する様々な概念は圏論によって一般化されるし、更に単純な概念によって構成でき

ることが多い。本資料では数学基礎論や計算機科学で特に使われ、とりわけ体系的で比較的単純であるカルテ

ジアン閉圏を目標に解説していく。

1.1 この pdfについて

他の入門書の差別化として、できるだけ議論や具体例を圏論の中で完結するようにしている。圏論の概念は

圏論で一般化、構成できることを述べたが、この入門書ではそれらを目的として議論を進めていく。それ故に

具体例を後回しで紹介することが多いため、どうしても気になるのであれば適宜飛ばして読んでほしい。

また証明もほとんど省略せず、行間ができないように記述してある。そのため全体的に煩雑に見えるかもしれ

ないが、個々の操作は単純であるため自明であると感じた場合はいちいち証明を追わなくてもよい。

2 圏と公理

定義 2.0.1 ある圏 Cは以下で定義される対象集合 Obj(C)と、任意の二対象 A,B に対するそれぞれの射集

合 C(A,B)、合成の演算 ◦によって定義する。また圏は以下に示す公理を満たさなければならない。

対象 圏はある集合 Obj(C)を持つ必要がある。

この集合を対象集合と呼ぶことにし、対象集合の要素を対象と呼ぶことにする。

射 任意の対象 A,B に対してある集合 C(A,B) を持つ必要がある。またこのような集合を射集合と

呼ぶことにし、射集合の要素を射と呼ぶことにする。

このような射集合は任意の二対象 A,B に対して存在することに注意してほしい。二対象 A,B の

間に射が存在しない場合の射集合は空集合となる。

また f ∈ C(A,B)である時 f : A → B と書く。このとき f に対する Aを始域、B を終域と呼び、

射から対象への二つの演算 dom, codを用い dom(f) = A、cod(f) = B と表す。

ある対象 A,B,C、ある射 f : A → B、g : A → C、h : C → B について考えるとき、以下のよう
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な図式を用いて説明を行う。

A B

C

f

g h

射の合成

ある射 f, g が cod(f) = dom(g)を満たす、つまり f : X → A、g : A → Y であるようなとき、あ

る射 g ◦ f : X → Y が存在し、このような射を合成射と呼ぶ。射をつなげる、という直感に反して

合成射の射の順序が射の向きと逆であることに注意してほしい。

射 h, gの合成 h ◦ gは次のように表せる。また対象 Aと対象 B の間の射は一つとは限らないので、

必ずしも h ◦ g = f が成り立つわけではない。

A B

C

f

h ◦ g

g h

このような操作は任意の対象 A,B,C における二変数の写像

◦ : C(B,C)×C(A,B) → C(A,C)

で表せる。また厳密には写像 ◦は任意の対象 A,B,C の組み合わせごとに個別に存在する。

恒等射の存在 恒等射と呼ばれる特別な射 idA : A → Aが任意の対象に存在する。

A B

C

idA idB

idC

結合律 結合則 h ◦ (g ◦ f) = (h ◦ g) ◦ f が合成可能な任意の射 f, g, hで成り立つ。
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A B C D
f g h

g ◦ f

h ◦ (g ◦ f)

h ◦ g

(h ◦ g) ◦ f

単位元律

任意の対象 Aと対応する恒等射 idA : A → A、任意の射 f : X → A、g : A → Y において

idA ◦ f = f, g ◦ idA = g

が成り立つ。

恒等射をある射に合成しても、合成する前の射と等しくなることから、直感的に恒等射は何も行わ

ない射のように考えられる。

X A Y
f

idA

g

X A

A Y

f

idA

g

idA ◦ f
g ◦ idA

定義 2.0.2（圏の同一性） 圏A,Bが同一、A = Bであるとは、対象の集合、射の集合、合成の演算が集合、

写像として等しいということである。

次に圏の例として集合の圏を挙げる。

定義 2.0.3（集合の圏） 圏 Setを以下の要素から構成する。

対象 Obj(Set)を小さな集合の集合とする。

「小さい」は自己言及を避けるための条件であり、実際に Obj(Set) は大きい集合となるため

Obj(Set)には含まれない。

射 二対象A,Bに対する射集合 Set(A,B)を小さな集合Aから小さな集合Bへの写像の集合とする。

また紛らわしい場合を除いて小さい集合を集合と呼ぶことにする。

集合の圏では一般的な圏とは違い、対象を集合として元をとることができる。そして同対象間に射

が二つあったとき、二つの写像が等しいかどうかを元の対応関係で確かめることができる。つま

り、二つの写像 f, g : A → B と集合 Aの任意の元 aに対して、

f(a) = g(a)
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ならば f = gが成り立つ、ということである。以降は元の対応関係を用いて集合の圏の射である写

像を定義していく。

射の合成 　二つの写像 f : A → B、g : B → C の合成写像 g ◦ f : A → C を A の任意の元 a に対

して
(g ◦ f)(a) = g(f(a))

となるように定義する。

集合の圏は一般的な圏とは違い、元の対応関係を調べるだけで射が等しくなることを示せる。

恒等射の存在 　任意の集合 Aに対する恒等射 idA を Aの任意の元 aに対して

idA(a) = a

となるように定義する。

結合律 任意の写像 f : A → B、g : B → C、h : C → D に対して h ◦ (g ◦ f) = (h ◦ g) ◦ f が成り立
つことを示せばよい。それぞれ合成写像の定義を用いて

((h ◦ g) ◦ f)(a) = (h ◦ g)(f(a))
= h(g(f(a)))

= h((g ◦ f)(a))
= (h ◦ (g ◦ f))(a)

となり、写像の合成では結合律が成り立つ。

単位元律 任意の集合 Aと対応する恒等写像 idA、任意の写像 f : X → A、g : A → Y において

(idA ◦ f)(x) = f(x), (g ◦ idA)(a) = g(a)

が成り立つことを示せばよい。

(idA ◦ f)(x) = idA(f(x)) (写像の合成の定義)

= f(x) (恒等写像の定義)

(g ◦ idA)(a) = g(idA(a)) (写像の合成の定義)

= g(a) (恒等写像の定義)

よって単位元律が成り立つ。

集合の圏の射である写像は、任意の元が同じ元に対応することによって射が等しいことを示せたが、一般の

圏ではそうは限らない。そもそも対象の元を取ることができるとは限らないし、元の対応関係が一致していて

も同じ射であるとも限らない。

集合の圏を集合によって定義したが以降で使用する集合としての性質は、元の対応関係により射が等しいこ

とを示せること以外はほとんど使用しない。仮に使用したとしても、直ちに圏論的な定義に置き換える。
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3 圏論の基本概念

この章では圏論で用いる基本的な概念を示していく。そこまで難しい概念は扱わないためこの段階で圏上の

操作に慣れてほしい。

まずはこれまで図示してきた図式について数学的な定義を与える。

定義 3.0.1（図式 (部分圏)） ある圏 C のある図式 (部分圏) とは、圏 C に含まれるいくつかの対象と、い

くつかの射で構成される圏であり、任意の対象に対応する恒等射を含み、図式中の任意の合成可能な二射

f : X → Y, g : Y → Z が含まれるとき、その合成射 g ◦ f も含むような圏である。

また図式は単に図示するために使用する以外にも、圏論のいくつかの概念を定義するのにも用いられる。

定義 3.0.2（可換） 圏におけるいくつかの射と対象の集まりである図式が可換である。すなわち可換図式で

あるとは、図式中の対象を頂点、図式中の射を辺とする有向グラフを考えたとき、任意の頂点 C,C ′ において

C から C ′ への任意の経路によって表される射が等しいときである。

例えば以下の図式において j ◦ g = l ◦ i, k ◦ h = m ◦ j, k ◦ h ◦ g = m ◦ j ◦ g = m ◦ l ◦ iが成り立つとすると、
これは可換図式になる。

A B C

D E F

g h

i j k

l m

3.1 元

集合の圏では集合から集合への関数の性質を述べるのに集合の元を用いることができるが、圏の対象では一

般的に元を取ることができない。しかしある圏 Cに終対象 1と呼ばれる特別な対象が存在するとき、Cの任

意の対象 Aのある元 (global elements)はある射 a : 1 → Aで表せる。

A

B

1
a

f ◦ a
f

射 f : A → B に対して a : 1 → Aを適用する操作は、そのまま関数の合成 f ◦ a : 1 → B で表せる。また

射を適用した元もまた終対象からの射になるから f ◦ aもまた対象 B の元になる。

後に詳しく説明するが、要素をただ一つ持つような集合は集合の圏における終対象 1であり、1から集合 A

への写像である元は実際に集合 Aの元とみなせる。

命題 3.1.1（集合の圏における元） 集合の圏には終対象となる集合 1 が存在し、任意の集合 A において元
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∆a : 1 → Aは集合における元に対し一意に対応する。また集合の圏における元は、集合 Aの要素 aに対して

∆aと表記することにする。

集合の圏においても値の適用は元の合成で表せる。すなわち f(a) = b は f ◦∆a = ∆b と書くこともでき

る。証明は後に行うが、これを値の適用と元の合成の同値性と呼ぶことにしよう。

3.2 同型

圏論では射の等しさを表すときには等号を使うが、対象に対しての等号は制約が多い。そのため同型と呼ば

れる同値関係を代わりに用いる。

定義 3.2.1（同型） ある対象 Aと B が同型、つまり A ∼= B であるとは、i ◦ i−1 = idB と i−1 ◦ i = idA を

満たすようなある二つの射 i : A → B とその逆射 i−1 : B → Aが存在するときである。このような射 i, i−1

を同型射と呼ぶ。またこの時、Aから B への射はすべてが同型射である必要はない。また、

A B
i

i−1

A B

B

i
idB

i−1

B A

A

i−1

idA

i

同型は対象同士の相互互換のような関係性を表しているように思える。

命題 3.2.2 同型は同値関係である。すなわち反射律、対称律、推移律を満たす。

証明 3.2.3

反射律 任意の対象 Aで A ∼= Aが成り立つことを証明すれば良い。idA : A → Aを同型射とその逆射

(idA)
−1 をまた idA とすると、

idA ◦ idA = idA, idA ◦ idA = idA

が成り立つから、idA は同型射であり A ∼= Aである。

対称律 同型 A ∼= B =⇒ B ∼= A を示せば良い。同型 A ∼= B が同型射 i : A → B とその逆射

i−1 : B → A によって成り立つとする。この時、i−1 の逆射を i とみなすと、i−1 ◦ i = idA と

i ◦ i−1 = idB が成り立つから、B ∼= Aとなる。

推移律 A ∼= B,B ∼= C =⇒ A ∼= C を示せば良い。A ∼= B の同型射を i : A → B、i−1 : B → A、

B ∼= C の同型射を j : B → C、j−1 : C → B とする。この時、j ◦ iと i−1 ◦ j−1 が同型射になる

ことを示せば良い。

A B C
i

i−1

j

j−1
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(j ◦ i) ◦ (i−1 ◦ j−1) = j ◦ (i ◦ i−1) ◦ j−1 (結合則)

= j ◦ (idB) ◦ j−1 (同型射の定義)

= j ◦ j−1 (恒等射の性質)

= idC (同型射の定義)

(i−1 ◦ j−1) ◦ (j ◦ i) = i−1 ◦ (j−1 ◦ j) ◦ i (結合則)

= i−1 ◦ (idB) ◦ i (同型射の定義)

= i−1 ◦ i (恒等射の性質)

= idA (同型射の定義)

よって j ◦ iと i−1 ◦ j−1 は同型射となり、A ∼= C が成り立つ。

命題 3.2.4（同型による元の対応） 同型 A ∼= B で、i : A → B が同型射である時、

i(a) = b ⇐⇒ i−1(b) = a

であり、この時 a ∼ bとする。そしてこのような a, bの対応は一対一対応である。

すなわち、aに対して a ∼ bとなるような bは一意に存在する。

1

A

B

a

b = i(a)

i i−1

証明 3.2.5 (=⇒)を示す。

i(a) = b

i−1(i(a)) = i−1(b)

(i−1 ◦ i)(a) = i−1(b) (写像の合成の定義)

idA(a) = i−1(b) (同型射の定義)

a = i−1(b) (恒等射の定義)

同様に (⇐=)も示せるから i(a) = b ⇐⇒ i−1(b) = aである。

aに対して a ∼ bなる bが存在することは、写像 i : A → B の全域性から分かる。すなわち a ∼ i(a)である。

次に bの一意性を示す。a ∼ b, a ∼ b′ とする。この時 b = b′ を示せばよい。

i−1(b′) = a (a ∼ b′ の定義)

i(i−1(b′)) = i(a)

idB(b
′) = i(a) (写像の合成の定義と同型射の定義)

b′ = i(a) (恒等射の定義)

b′ = b (a ∼ bの定義)

よって bが一意に定まることが分かり、a, bが一対一対応をすることを示せた。

この性質は終対象 1が存在すれば成り立つが、更に終対象 1の存在する集合の圏では逆もなりたつ。
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命題 3.2.6（集合の圏の同型による元の対応） 集合の圏 Setにおいて A ∼= B ⇐⇒ ∆a ∼ ∆bなる ∆a,∆b

が一対一対応。

4 普遍性

普遍性はある対象と射を特徴づけるために使用され、ある図式を可換にするような射が一意に存在する。と

いうように記述される概念である。普遍性は圏論の中で様々な姿に形を変えて現れるとても重要な概念であ

る。それもあって、少なくとも現時点では普遍性の厳密な定義は示すことができないが、そこまで意識しなく

ともよい。

普遍性では図式中の射と一意に定まる射の対応関係を示すことが多い。このような議論は集合の圏における同

型でも扱ったが、実際に以下で紹介する普遍性は集合の全単射で表せる。詳しくは別の章で説明する。

4.1 積

集合における直積集合を圏に一般化した積を扱う。集合の圏が積の普遍性を持つことは別の章で証明するた

め、気になった場合は先にそちらを読んでほしい。

定義 4.1.1（積） 対象 Aと B が積を持つとは、以下の条件を満たす組 (A× B, πL,A×B , πR,A×B)が存在す

るときである。

積対象と射影射 ある対象 A×B とある二つの射 πL,A×B : A×B → A、πR,A×B : A×B → B が存

在する。

この時 A× B を積対象と呼び、πL,A×B , πR,A×B を射影射と呼ぶことにする。また正確に記述し

たい場合、積対象と射影射の組 (A×B, πL,A×B , πR,A×B)を A,B の積と呼ぶことにする。

A BA×B
πL,A×B πR,A×B

また (A× A, πL,A×B , πR,A×B)などの紛らわしい場合を除いて πL,A×B を πA、πR,A×B を πB と

表記する。

任意の対象からの射 任意の対象 X に対し任意の二射 f : X → A、g : X → B が存在するとする。

A BA×B

X

πA πB

f g

普遍性 任意の二射 f, g に対して図式を可換にする、つまり

πA ◦ t = f, πB ◦ t = g
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が成り立つような射 tが少なくとも一つは存在し、このような tを ⟨f, g⟩と表記する。
この時、⟨f, g⟩を f, g に対する射の対と呼ぶことにする。また射の対 ⟨f, g⟩は任意の二射 f, g に対

して一意に存在する。

ここでの射の対が一意であるとは、ある射 t : X → A×B が

πA ◦ t = f, πB ◦ t = g

を満たす。すなわち射の対であるとき、同様にある射 h : X → A×B も同様に

πA ◦ h = f, πB ◦ h = g

を満たし射の対であるとき、h = t = ⟨f, g⟩が成り立つということである。

A BA×B

X

πA πB

f g
⟨f, g⟩

また、図式を可換にする射の対 ⟨f, g⟩ の存在性は任意の射の組み合わせに対して射の対が存在することを示
し、一意性は射の対が含んでいる二つの射以外の判別可能な要素を含みようがないことを示している。

定義 4.1.2（積を持つ圏） すべての圏、すべての二対象に対して積が存在するとは限らないが、ある圏 Cの

任意の二対象に対して積が存在するとき、圏 Cは積を持つという。

ここで X に終対象 1を当てはめると、元 a : 1 → A、元 b : 1 → B に対して πA ◦ ⟨a, b⟩ = a、πB ◦ ⟨a, b⟩ = b

が成り立つような ⟨a, b⟩が一意に存在することがわかる。

A BA×B

1

πA πB

a b⟨a, b⟩

次に積の普遍性を用いた証明の練習として、射の対が合成に対して分配的であることを示そう。

命題 4.1.3（射の対の分配則） f : X → A、g : X → B、h : Y → X に対して

⟨f, g⟩ ◦ h = ⟨f ◦ h, g ◦ h⟩

が成り立つ

証明 4.1.4 積 A×B に対し、f ◦ h : Y → A、g ◦ h : Y → B の射の対 ⟨f ◦ h, g ◦ h⟩ : Y → A×B を考える。

これは ⟨f, g⟩ ◦ h : Y → A× B が二射 f ◦ h, g ◦ hにおける射の対となることを示し、射の対の一意性から
証明すればよい。
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積の普遍性より、

πA ◦ ⟨f ◦ h, g ◦ h⟩ = f ◦ h
πB ◦ ⟨f ◦ h, g ◦ h⟩ = g ◦ h

が成り立つような射 ⟨f ◦ h, g ◦ h⟩は一意に存在する。
また、

πA ◦ (⟨f, g⟩ ◦ h) = (πA ◦ ⟨f, g⟩) ◦ h (結合則)

= f ◦ h (射の対の可換性)

πB ◦ (⟨f, g⟩ ◦ h) = (πB ◦ ⟨f, g⟩) ◦ h (結合則)

= g ◦ h (射の対の可換性)

πA ◦ (⟨f, g⟩ ◦h) = f ◦h、πB ◦ (⟨f, g⟩ ◦h) = g ◦hとなるため、⟨f, g⟩ ◦h : Y → A×Bも同様に二射 f ◦h, g ◦h
の射の対になる。よって射の対の一意性より、⟨f, g⟩ ◦ h = ⟨f ◦ h, g ◦ h⟩が成り立つ。

Y

A BA×B

X

h

f ◦ h g ◦ h

πA πB

f g
⟨f, g⟩

Y

A BA×B

⟨f, g⟩ ◦ h⟨f ◦ h, g ◦ h⟩

f ◦ h g ◦ h

πA πB

普遍性を用いた基本的な等式の証明はこのように、等式の右辺左辺が同じ二射の射の対になるような図式を

考え、射の対の一意性から等式を示す。この証明では積の図式に対象 Y と射 h をつなげて拡張することで、

新しい積の図式を考えた。

また Y に終対象 1、hに元 x : 1 → X を当てはめると、同様に ⟨f, g⟩ ◦ x = ⟨f ◦ x, g ◦ x⟩となる。つまり射
の対は与えられた元にそれぞれの射を適用し、また対を取るような射だと考えられる。

1

A BA×B

⟨f, g⟩ ◦ x⟨f ◦ x, g ◦ x⟩

f ◦ x g ◦ x

πA πB

次に任意の積から任意の積への射である、射の積を定義していく。

定義 4.1.5（射の積） 射 f : A → A′、g : B → B′ に対して射の積 f × g : A×B → A′ ×B′ を

f × g = ⟨f ◦ πA, g ◦ πB⟩
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と定義する。

A A×B B

A′ A′ ×B′ B′
πA′ πB′

πA πB

f gf × g

射の対は任意の対象から任意の積への射であるのに対し、射の積は任意の積から任意の積への射である。二つ

の対象から二つの対象へ射を一つの射に纏めることから、直感的に射の積は並列処理のように思える。

命題 4.1.6（積と合成の交換） 射の積 f × g : A×B → A′ ×B′、f ′ × g′ : A′ ×B′ → A′′ ×B′′ に対して、

(f ′ × g′) ◦ (f × g) = (f ′ ◦ f)× (g′ ◦ g)

が成り立つ。

証明 4.1.7 積 (A′′ ×B′′, πA′′ , πB′′)において対 (X, f, g)に (A×B, f ′ ◦ f ◦ πA,g
′ ◦ g ◦ πB)を当てはめると

射 ⟨f ′ ◦ f ◦ πA, g
′ ◦ g ◦ πB⟩ : A×B → A′′ ×B′′ が得られる。また射の積の定義より

⟨f ′ ◦ f ◦ πA, g
′ ◦ g ◦ πB⟩ = (f ′ ◦ f)× (g′ ◦ g)

が成り立つ。次に (f ′ × g′) ◦ (f × g)も同様に (A×B, f ′ ◦ f ◦ πA,g
′ ◦ g ◦ πB)に対する射の対であることを

示す。

πA′′ ◦ (f ′ × g′) ◦ (f × g) = πA′′ ◦ ⟨f ′ ◦ πA, g
′ ◦ πB⟩ ◦ ⟨f ◦ πA, g ◦ πB⟩ (射の積の定義)

= f ′ ◦ πA′ ◦ ⟨f ◦ πA, g ◦ πB⟩ (射の対の可換性)

= f ′ ◦ f ◦ πA (射の対の可換性)

πB ◦ (f ′ × g′) ◦ (f × g) = πB′′ ◦ ⟨f ′ ◦ πA, g
′ ◦ πB⟩ ◦ ⟨f ◦ πA, g ◦ πB⟩ (射の積の定義)

= g′ ◦ πB′ ◦ ⟨f ◦ πA, g ◦ πB⟩ (射の対の可換性)

= g′ ◦ g ◦ πB (射の対の可換性)

A

A′

A′′

A×B

A′ ×B′

A′′ ×B′′

B

B′

B′′

πA

πB

πA′

πB′

πA′′

πB′′

f

f ′

g

g′

f × g

f ′ × g′

A′′

A×B

A′′ ×B′′ B′′

f ′ ◦ f ◦ πA g′ ◦ g ◦ πB

πA′′ πB′′

(f
′×

g
′)

◦
(f

×
g
)

(f
′◦

f
)
×

(g
′◦

g
)

πA ◦ (f ′ × g′) ◦ (f × g) = f ′ ◦ f ◦ πA, πB ◦ (f ′ × g′) ◦ (f × g) = g′ ◦ g ◦ πB

の二式が成り立つから、(f ′ × g′) ◦ (f × g)も同様に (A×B, f ′ ◦ f ◦ πA,g
′ ◦ g ◦ πB)に対する射の対である。

よって (f ′ × g′) ◦ (f × g) = (f ′ ◦ f)× (g′ ◦ g)が成り立つ。
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射の積を並列での合成とみなすならば、射の合成は直列での合成を表し、積と合成の交換はどちらの合成を先

に計算しても結果が変わらないことを表す。

命題 4.1.8（射影射の対） ある積 (A×B, πA, πB)に対して ⟨πA, πB⟩ = idA×B が成り立つ。

証明 4.1.9 積 (A × B, πA, πB)に対して二射 πA, πB の射の対 ⟨πA, πB⟩ : A × B → A × B を考える。この

時、idA×B : A×B → A×B も同様に二射 πA, πB の射の対であることを示せばよい。

πA ◦ idA×B = πA と πB ◦ idA×B = πB が成り立つから、idA×B は πA と πB の射の対になる。よって射の

対の一意性より、⟨πA, πB⟩ = idA×B が成り立つ。

A A×B B

A×B

πA πB
⟨πA, πB⟩idA×B

πA

πB

命題 4.1.10（積の一意性） A と B の積 A × B に対して、同様に A と B の積である対象 P と射影射

ρA : P → A、ρB : P → B が存在するとき、A×B ∼= P が成り立つ。またこの時、積は同型を除いて一意と

呼ぶことがある。

証明 4.1.11 対象 A、B の積 (A×B, πA, πB)、(P, ρA, ρB)の二つの積を考える必要があるが、ややこしいの

で少し性質を整理する。

積 (A×B, πA, πB)の性質 積 A×B と射影射 πA : A×B → A、πB : A×B → B において二つの射

f : X → A、g : X → B に対する射の対を ⟨f, g⟩ : X → A×B とする。また射 ⟨f, g⟩が積 A×B

における射の対であるとき、

πA ◦ ⟨f, g⟩ = f

πB ◦ ⟨f, g⟩ = g

が成り立つ。またこのような射の対は一意に存在する。

A BA×B

X

πA πB

f g
⟨f, g⟩

積 (P, ρA, ρB)の性質 積 P と射影射 ρA : P → A、ρB : P → B において二つの射 f : X → A、

g : X → B に対する射の対を [f, g] : X → P とする。また射 [f, g]が積 P における射の対である
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とき、

ρA ◦ [f, g] = f

ρB ◦ [f, g] = g

が成り立つ。またこのような射の対は一意に存在する。

A BP

X

ρA ρB

f g
[f, g]

積 A× B における射の対 ⟨f, g⟩ : X → A× B に対し、積 P における射の対 [f, g] : X → P は全く別

の射である。そのため対の表記で区別することにする。

また πA ◦ [f, g] = f は成り立たないどころか、始域、終域は πA : A× B → Aと [f, g] : X → P とな

り合成すらできないということに注意してほしい。

証明に戻ると、
[πA, πB ] ◦ ⟨ρA, ρB⟩ = idP

と
⟨ρA, ρB⟩ ◦ [πA, πB ] = idA×B

が成り立つことを二つの積の普遍性による射の一意性から示せばよい。具体的にはこれらの射がある積の図式

における射の対になることを示し、射の対の一意性から等式を導く。

積 (A×B, πA, πB)において、二射 ρA, ρB に対する射の対を

⟨ρA, ρB⟩ : P → A×B

とする。

逆に積 (P, ρA, ρB)において二射 πA, πB に対する射の対を

[πA, πB ] : A×B → P

とする。

A A×B B

P

ρA

ρB

⟨ρ
A
,
ρ
B
⟩

πA

πB
A

A×B

BPρA

ρB

[ρ
A
,
ρ
B
]

πA

πB
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次に ⟨ρA, ρB⟩ ◦ [πA, πB ] : A×B → A×B が πA と πB の射の対であることを示す。

πA ◦ ⟨ρA, ρB⟩ ◦ [πA, πB ] = ρA ◦ [πA, πB ] (積 A×B の射の対の可換性)

= πA (積 P の射の対の可換性)

πB ◦ ⟨ρA, ρB⟩ ◦ [πA, πB ] = ρB ◦ [πA, πB ] (積 A×B の射の対の可換性)

= πB (積 P の射の対の可換性)

よって
πA ◦ (⟨ρA, ρB⟩ ◦ [πA, πB ]) = πA, πB ◦ (⟨ρA, ρB⟩ ◦ [πA, πB ]) = πB

が成り立つから、⟨ρA, ρB⟩ ◦ [πA, πB ]は射 πA と πB の射の対となる。すると射の対の一意性より、

⟨ρA, ρB⟩ ◦ [πA, πB ] = ⟨πA, πB⟩ = idA×B

が成り立つ。

A A×B

A×B

B

P

ρA ρB

⟨ρ
A
,ρ

B
⟩

[π
A
,π

B
]

πA

πB

πA

πB

A A×B B

A×B

πA πB

⟨ρ
A
,
ρ
B
⟩
◦
[π

A
,
π
B
]

idA×B

πA

πB

同様に [πA, πB ] ◦ ⟨ρA, ρB⟩ = idP が成り立つから、[πA, πB ]と ⟨ρA, ρB⟩は同型射となり、A×B ∼= P が成り

立つ。

4.2 終対象

対象の元で述べた終対象は実は普遍性で定義される。積の普遍性と似ているようで似ていない雰囲気であ

るが、

定義 4.2.1（終対象） ある圏Cに終対象が存在するとは、ある対象 1が存在して圏Cの任意の対象X に対

し射 !X : X → 1が一意に存在するときである。

元を取る操作とは射の向きが逆であることに注意してほしい。

積対象 A×B はある対象 A,B や二つの射影射に対して定義されるのであったが、終対象は既存の対象や射に

対して定義されるものではない。後に証明するが、一つの圏に対して一つの終対象を考えると捉えて良い。

また同様に射の対 ⟨f, g⟩ : X → A×B は対象X と射 f, gに対して一意に存在するのであったが、終対象への
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射 !X : X → 1は対応する射が存在しない。そのため、終対象への射は対象 X に対して無条件で一意に存在

することになる。

命題 4.2.2（終対象から終対象への射） 終対象から終対象への射は恒等射ただ一つである。

証明 4.2.3 終対象 1に対して、終対象から終対象への射 !1 : 1 → 1は無条件で一意に定まる。すべての対象

に恒等射は存在するから id1 =!1 となる。

1 1
!1

id1

命題 4.2.4（終対象の一意性） 終対象 1に対して別の終対象 I が存在するとき、1 ∼= I が成り立つ。すなわ

ち終対象は同型を除いて一意に定まる。

証明 4.2.5 終対象 1における I からの一意に定まる射 !I : I → 1と終対象 I における 1からの一意に定まる

射 i1 : 1 → I の合成 !I ◦ i1 : 1 → 1と i1◦!I : I → I はそれぞれ終対象から終対象への射である。

よって !I ◦ i1 = id1 と i1◦!I = idI が成り立ち、!I、i1 が同型射になるから 1 ∼= I が成り立つ。

1 I
!I

i1
i1◦!I !I ◦ i1

最後に終対象と積の二つの普遍性を使った証明を考える。もし余力があれば自力で証明を書いてみてほ

しい。

命題 4.2.6（終対象との積） 終対象 1と任意の対象 Aにおいて、A× 1 ∼= Aが成り立つ。

証明 4.2.7 対象 A が 1 と A に対する積対象であることを示せば良い。より正確には積 (A, idA, !A) が 1, A

に対する積であることを示す。また、積 (A, idA, !A)の任意の対象X からの二射 f : X → A、!X : X → 1に

対する射の対を f : X → Aとする。

A A 1

X

f !X
f

idA !X

まずは f が射の対であることを確認する。

idA ◦ f = f (恒等射の定義)

!A ◦ f =!X (終対象の普遍性)

後者の式は !A ◦ f : X → 1と !X : X → 1のどちらも対象 X からの射であるため、終対象の定義より一意に

定まる。よって f は確かに f と !X の射の対である。

次に射の対の一意性を示す。まずは f が射の対であることを確認する。同様に f と !X の射の対となるよう
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な任意の射 f ′ は以下の等式を満たす。

idA ◦ f ′ = f

!A ◦ f ′ =!X

前者の等式より、idA ◦ f ′ = f ′ = f となり、射の対は一意に定まる。

よって積 (A, idA, !A)は 1と Aに対する積であり、積の一意性より A× 1 ∼= Aが成り立つ。

また証明は省略するが、同型射はそれぞれ ⟨idA, !X⟩ : A → A× 1、πA : A× 1 → Aとなる。

5 集合の圏

圏の一例としてこれまで集合の圏を扱ってきたが、一般的な圏の射集合の定義に集合が使われていることか

らわかるように、集合の圏は圏論の中でも重要な役割を果たす。集合というと、集合論的な操作を想定する

かもしれないが、純粋な圏論で使用するいくつかの集合の性質はたいてい圏の言葉で置き換えることができ

る。そのためこれから扱ういくつかの集合、とりわけ射集合を異質な存在として捉えないようにしていただき

たい。

5.1 集合の圏と積

まずは集合の圏 Setと積の関係性を示す。元を指定して直接直積集合を定義する方法と、普遍性を用いて

直積集合の周りの写像の性質を述べて定義する方法の二つが同値であることを確認してほしい。

定義 5.1.1（直積集合） 集合 Aと B の直積集合 A×B を

A×B = {⟨a, b⟩ | a ∈ A, b ∈ B}

と定義する。

命題 5.1.2（直積と積の同値性） A×B が集合の圏 Set上の積 ⇐⇒ A×B が直積集合

証明 5.1.3（=⇒） 任意の元 ∆a : 1 → A、∆b : 1 → B に対して射の対の存在性により元の対 ⟨∆a,∆b⟩ :
1 → A×B が一意に存在する。これを順序対なる元 ∆⟨a, b⟩とする、すなわち

∆⟨a, b⟩ = ⟨∆a,∆b⟩

とすると、任意の要素 a、bに対して順序対 ⟨a, b⟩が一意に存在することになる。これにより、A× B の要素

は順序対以外の要素を含まないことから、積 A×B は集合 Aと B の直積集合であることが示せた。

A BA×B

1

πA πB

∆a ∆b⟨∆a,∆b⟩

証明 5.1.4（⇐=） 直積集合の定義より、任意の元 a、bに対して順序対 ⟨a, b⟩が存在し、順序対ではない元
や重複する元を含まない。すなわち、順序対 ⟨a, b⟩は要素 a, bに対して一意に存在する。
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これによって写像 f : X → Aと写像 g : X → B の写像の対 ⟨f, g⟩を X の任意の要素 xに対して

⟨f, g⟩(x) = ⟨f(x), g(x)⟩

と定義することができるようになる。

またここで射影射となる射影写像 πA, πB を任意の順序対 ⟨a, b⟩において

πA(⟨a, b⟩) = a, πB(⟨a, b⟩) = b

と定義して、写像の対が射の対になることを示せば良い。

(πA ◦ ⟨f, g⟩)(x) = πA(⟨f, g⟩(x)) (写像の合成の定義)

= πA(⟨f(x), g(x)⟩) (写像の対の定義)

= f(x) (元の対の可換性)

(πB ◦ ⟨f, g⟩)(x) = πB(⟨f, g⟩(x)) (写像の合成の定義)

= πB(⟨f(x), g(x)⟩) (写像の対の定義)

= g(x) (元の対の可換性)

よって
πA ◦ ⟨f, g⟩ = f, πB ◦ ⟨f, g⟩ = g

が成り立つから写像の対は射の対としての可換性を満たし、任意の射 f, g に対して存在することが分かった。

一意性については仮に πA ◦ h = f, πB ◦ h = g となる射 h : X → A × B が存在しても、πA(h(x)) =

f(x), πB(h(x)) = g(x)と順序対の一意性より h(x) = ⟨f(x), g(x)⟩が成り立ち h = ⟨f, g⟩となる。よって写
像 f, g の写像の対 ⟨f, g⟩は一意に存在する。

5.2 集合の圏と終対象

定義 5.2.1（一点集合） 何かしらの要素をただ一つ持つような集合 {∗}を一点集合とする。

命題 5.2.2（一点集合と終対象の同値性） 1は集合の圏 Setの終対象 ⇐⇒ 1は一点集合 {∗}

Setにおける終対象の一意性は、一点集合のただ一つの元を区別しないということである。

証明 5.2.3（=⇒） 終対象 1の元、すなわち射∆∗ : 1 → 1は終対象から終対象への射であり、恒等射ただ一

つであるから終対象の元はただ一つである。

証明 5.2.4（⇐=） 任意の集合 Aと一点集合 1においてある写像 !A : A → 1が一意に存在することを示せ

ばよい。任意の要素 aにおいて !A(a) = ∗と定義すると、このような写像は任意の集合で定義できることがわ
かる。また一点集合の元がただ一つしかないので、どのような写像であっても任意の元 aは必ず ∗に対応する
ことになる。つまり !A(a) = ∗以外の対応付けが行えないので写像 !A は一意に存在することがわかる。

よって Aから 1への写像は一意に存在し、一点集合 1は終対象となる。

次に集合の圏に限定するが、終対象からの射を元とみなせることを証明する。
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定義 5.2.5（定写像） 集合の圏 Set において、任意の対象 A,B と B の任意の元 b に対する定写像を

∆b : A → B とし、Aの任意の元 aに対して ∆b(a) = bとなる写像とする。

定写像は常に一定の値を返す定数関数のような写像である。次に元をその元を返す定写像に写す写像である、

対角写像を定義する。

定義 5.2.6（対角写像） 集合の圏 Setにおいて任意の対象 A,B に対し、対角写像 ∆ : A → Set(B,A)を

∆(a) = ∆aと定義する。すなわち、任意の元 a, bに対して∆(a)(b) = aである。

命題 5.2.7（集合の元と終対象） 任意の集合 Aとある一点集合 1に対し A ∼= Set(1, A)が成り立つ。

証明 5.2.8 まず一点集合 1から任意の集合 Aへの射が定写像であることを示そう。

これは簡単で一点集合はただ一つの元しか持たないから、それを写した先の元はただ一つに定まる。よって定

写像である。

対角写像 ∆ : A → Set(1, A)に逆射∆−1 : Set(1, A) → Aが存在することを示す。

任意の射 f : 1 → Aに対して ∆−1(f) = f(∗)と定義する。すると任意の射 f : 1 → Aと任意の元 aに対して

(∆−1 ◦∆)a = ∆−1(∆a) (写像の合成の定義)

= ∆a(∗) (∆−1 の定義)

= a (対角写像の定義)

(∆ ◦∆−1)f = (∆ ◦∆−1)(∆a) (fは定写像)

= (∆ ◦ (∆−1 ◦∆))(a) (写像の合成の定義)

= ∆((∆−1 ◦∆)a) (写像の合成の定義)

= ∆a (前式)

= f

よって
∆−1 ◦∆ = idA, ∆ ◦∆−1 = idSet(1, A)

が成り立つから同型射であり、A ∼= Set(1, A)である。

また元を最初に定義した時、集合の圏において ∆a : 1 → Aに対して f : A → B を合成する操作は値の適用

とみなせると説明したが、元の厳密な定義によって示せるようになったので証明する。

命題 5.2.9（値の適用と元の合成の同値性） 集合の圏 Set において、A の任意の元 a、B の任意の元 b、任

意の射 f : A → B に対して、
f(a) = b ⇐⇒ f ◦∆a = ∆b

A

B

1
∆a

f ◦∆a
f
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証明 5.2.10（=⇒）

f(a) = b

f(∆a(∗)) = ∆b(∗) (定写像の定義)

f ◦∆a(∗) = ∆b(∗) (写像の合成の定義)

1の任意の元 ∗に対して成り立つから

f ◦∆a = ∆b

となる。

証明 5.2.11（⇐=） 上の証明の等式変形を逆に行えば良い。

5.3 集合の圏と射集合

圏を定義する際に使用した射集合だが、射集合も集合であるため集合の圏の対象として捉えることができ

る。射集合というと、未知の集合論的な操作をいくつも持っているのかと考えてしまうが、これから扱う射集

合の性質は圏論的に定義されたものだけで事足りる。そのため少し大げさかもしれないが、これから説明する

操作や性質を射集合の定義だと考えても良いかもしれない。また、ここから一般の圏 Cと集合の圏 Setを同

時に扱うことになる。そのため、今扱っている対象や射、議論がどの圏上で行われるのかを意識してほしい。

定義 5.3.1（共変射写像） 圏 Cの対象 A,B と射 f : A → B に対して、任意の射 g : X → Aに射 f を左か

ら合成する写像を

C(X, f) : C(X,A) → C(X,B)

C(X, f)(g) = f ◦ g

X

X

A

B

C(X,A)

C(X,B)

C Set

C(X, f)f

g

f ◦ g

と定義する。またこのような写像を共変射写像と呼ぶことにする。

圏の定義で確認した射の合成を行う写像

◦ : C(A,B)×C(X,A) → C(X,B)

は、任意の射集合の元の対 ⟨f, g⟩を f ◦ g に写す写像であったが、共変射写像C(X, f)は対の左側の射 f を固

定した写像であることがわかる。

また射集合の元の対 ⟨f, g⟩ は積の普遍性で扱った射の対ではないことに注意してほしい。ただし、条件に
よっては一対一対応をすることがある。これは後で証明を行う。

共変射写像では射を左から合成する写像を考えたが、次は射を右から合成する写像である反変射写像を考

える。
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定義 5.3.2（反変射写像） 圏 Cの対象 A,B と射 f : A → B に対して、任意の射 g : X → B に射 f を右か

ら合成する反変射写像を

C(f,X) : C(B,X) → C(A,X)

C(f,X)(g) = g ◦ f

X

X

A

B

C(A,X)

C(B,X)

C Set

C(f,X)f

g ◦ f

g

と定義する。共変射写像と違い、射 f に対して C(f,X)の向きが逆になっている。

これまでは一般の圏 Cの射集合についての議論を行なってきたが、以降は射集合を取る圏を Setに限定し

て行うことにする。理由としては Set上の射集合もまた集合であり、Setの対象であるためである。そのた

め、射集合とその始域、終域となる集合の間に射を伸ばすことができ、射集合のさらなる性質を記述すること

ができるようになる。

次に射写像の応用として、対象の同型との関係性を見る。

命題 5.3.3（共変射写像の同型の保存） ある圏 C において B ∼= B′ =⇒ 任意の対象 X に対し C(X,B) ∼=
C(X,B′)

証明 5.3.4 同型射を i : B → B′、i−1 : B′ → B として、共変射写像

C(X, i) : C(X,B) → C(X,B′)

と
C(X, i−1) : C(X,B′) → C(X,B)

もまた同型射になることを示す。すなわち、

C(X, i) ◦C(X, i−1) = idC(X,B′)

C(X, i−1) ◦C(X, i) = idC(X,B)

を示せばよい。

射集合 C(X,B′)の任意の元 f : X → B′ に対して、

C(X, i) ◦C(X, i−1)(f) = C(X, i)(C(X, i−1)(f)) (写像の合成の定義)

= C(X, i)(i−1 ◦ f) (共変射写像の定義)

= i ◦ i−1 ◦ f (共変射写像の定義)

= idB′ ◦ f (同型射の定義)

= f (恒等射の定義)

= idC(X,B′)(f) (恒等射の定義)
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よって C(X, i) ◦C(X, i−1) = idC(X,B′) が示せた。同様に C(X, i−1) ◦C(X, i) = idC(X,B) も示せる。

よって C(X, i) : C(X,B) → C(X,B′) と C(X, i−1) : C(X,B′) → C(X,B) もまた同型射となるため、

C(X,B) ∼= C(X,B′)が成り立つ。

X

X B

B′

C(X,B)

C(X,B′)

C Set

C(X, i) C(X, i−1)i i−1

i−1 ◦ f

f

また同様の性質が反変射写像でも成り立つ

命題 5.3.5（反変射写像の同型の保存） ある圏 Cにおいて A ∼= A′ ⇐⇒ 任意の対象 X に対し C(A,X) ∼=
C(A′, X)

一つ前の命題の任意の対象 X に終対象 1を当てはめると、

B ∼= B′ =⇒ C(1, B) ∼= C(1, B′)

となる。C(1, B)は B の元の集合である。それらが同型であるということは、B の元と B′ の元が一対一対応

をするということであり、前に示した元と同型の関係性そのものであることが分かる。

さらに任意の対象X に拡張することで、元 b : 1 → B が一対一対応をするだけでなく、射 f : X → B までも

が一対一対応をすることが分かった。射の対応も元と同様に f ∼ f ′ と表すことにする。

射写像によって射集合の振る舞いを圏論的に扱えるようになった。そこで A ∼= Set(1, A) によって、そ

の間の射はどのように対応するだろうかを調べる。つまり射 f : A → B に対して Set(1, f) : Set(1, A) →
Set(1, B)は射 f とどのような関係にあるか、ということである。この考えは Aと Set(1, A)を同一視する

上で有用であり、次の命題で表現できる

命題 5.3.6（元の集合の自然同型性） Set(A,B) ∼= Set(Set(1, A),Set(1, B))

A

B

Set(1, A)

Set(1, B)

f Set(1, f)

証明 5.3.7

Set(A,B) ∼= Set(A,Set(1, B)) (共変射写像の同型の保存)

∼= Set(Set(1, A),Set(1, B)) (反変射写像の同型の保存)

またこの同型関係は図式の可換性も保つ。つまり、

命題 5.3.8（Set(1,−)の合成の保存） g ◦ f = h ⇐⇒ Set(1, g) ◦ Set(1, f) = Set(1, h)である。
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証明 5.3.9（=⇒） g ◦ f = h であるから、Set(1, g) ◦ Set(1, f) = Set(1, g ◦ f) を示せば良い。任意の射
a : 1 → Aに対して、

Set(1, g) ◦ Set(1, f)(a) = Set(1, g)(Set(1, f)(a)) (写像の合成の定義)

= Set(1, g)(f(a)) (共変射写像の定義)

= g(f(a)) (共変射写像の定義)

= (g ◦ f)(a) (写像の合成の定義)

= Set(1, g ◦ f)(a) (共変射写像の定義)

よって Set(1, g) ◦ Set(1, f) = Set(1, g ◦ f)となる。

証明 5.3.10（⇐=） Set(1, g) ◦ Set(1, f) = Set(1, h)であれば、上の証明から任意の射 a : 1 → Aに対し

て Set(1, g) ◦Set(1, f)(a) = g(f(a))であった。また Set(1, h)(a) = h(a)も成り立つから、g(f(a)) = h(a)

であり、g ◦ f = hとなる。

これによって元を集合の要素とみなしても、これらの同値性によって妥当であることが分かった。よって以降

は紛らわしくない場合、∆a : 1 → Aをそのまま a : 1 → Aと表記することにする。

定義 5.3.11（評価射） 集合の圏 Set の任意の対象 A,B と B の元 b、Set の射 f : B → A に対して評価

射を

evA,B : Set(B,A)×B → A

evA,B(⟨f, b⟩) = f(b)

と定義する。もしくはこれは元 bに写像 f を適用する操作を写像にしたものである。またこのような射は任

意の対象 A,B に対して個別に存在するが、現段階では添え字としての対象を省略し、特に区別はしない。厳

密な証明は行わないが評価射は実際に写像になる。

定義 5.3.12（余評価射） 集合の圏 Setの任意の対象 A,B と Aの元 aに対して余評価射を

ceA,B : A → Set(B,A×B)

ceA,B(a) = λx.⟨a, x⟩ : B → A×B

λx.⟨a, x⟩(b) = ⟨a, b⟩

と定義する。また
ceA,B(a)(b) = ⟨a, b⟩

とも表記できる。同様にこのような射は任意の対象 A,B に対して個別に存在するが区別しない。

また、余評価射によって得られる射 λx.⟨a, x⟩ : B → A× B と任意の射 f : C → B、g : A× B → C との

合成に対して以下の表記を導入する。

C B A×B
g λx.⟨a, x⟩

B A×B C
λx.⟨a, x⟩ f
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(λx.⟨a, x⟩) ◦ f = λx.⟨a, f(x)⟩
g ◦ (λx.⟨a, x⟩) = λx.g(⟨a, x⟩)

定義からわかるように、B の任意の値 bを適用すると、

λx.⟨a, f(x)⟩(b) = ⟨a, f(b)⟩
λx.g(⟨a, x⟩)(b) = g(⟨a, b⟩)

となる。余評価射の定義に値の適用を用いたが、これは評価射で表すことができる。次はこのような評価射と

余評価射の関係性、性質を見ていく。以下証明する二つの命題は当分使用しないため、興味がなければ飛ばし

てもらっても構わない。

命題 5.3.13（冪の三角恒等式 1） 任意の対象 A,B において、

ce ◦ Set(B, ev) = idSet(B,A)

が成り立つ。

Set(B,A) Set(B,Set(B,A)×B)

Set(B,A)

idSet(B,A)

ce

Set(B, ev)

証明 5.3.14 任意の射 f : B → Aに対して、

Set(B, ev) ◦ ce(f) = Set(B, ev)(λx.⟨f, x⟩) (余評価射の定義)

= ev ◦ λx.⟨f, x⟩ (共変射写像の定義)

= λx.ev(⟨f, x⟩)
= λx.f(x) (評価射の定義)

となる。直感的に明らかではあるが、λx.f(x) = f を示す。対象B の任意の元 bに対して余評価射の定義から

(λx.f(x))(b) = f(b)

となる。よって
λx.f(x) = f

となり、これが任意の射 f で成り立つから、

ce ◦ Set(B, ev) = idSet(B,A)

となる。

命題 5.3.15（冪の三角恒等式 2） 任意の対象 A,B において、

ev ◦ (ce× idB) = idA×B

が成り立つ。

24



A×B Set(B,A×B)×B

A×B

idA×B

ce× idB

ev

証明 5.3.16 対象 A×B の任意の元 ⟨a, b⟩に対して、

ev ◦ (ce× idB)(⟨a, b⟩) = ev(⟨ce(a), b⟩) (射の積の定義)

= ev(⟨λx.⟨a, x⟩, b⟩) (余評価射の定義)

= λx.⟨a, x⟩(b) (評価射の定義)

= ⟨a, b⟩ (余評価射の定義)

となる。よって
ev ◦ (ce× idB) = idA×B

が成り立つ。

5.4 評価射、余評価射の応用

評価射、余評価射を用いれば、集合の圏における圏の定義に現れる操作と等しくなるような写像を

構成することができる。ここでは恒等射を得る操作と対角写像の構成を示すが、射の合成を行う操作

◦ : Set(B,C)× Set(A,B) → Set(A,C)を構成することもできる。

命題 5.4.1（余評価射による恒等射の定義） Set(A, πA) ◦ ce : 1 → Set(A,A) は射集合 Set(A,A) におけ

る恒等射を表す元である。

1×A

A

Set(A, 1×A)

Set(A,A)

1

πA Set(A, πA)

ce

Set(A, πA) ◦ ce

証明 5.4.2 Set(A, πA) ◦ ce(∗)を計算すれば良い。

Set(A, πA) ◦ ce(∗) = Set(A, πA)(λx.⟨∗, x⟩) (写像の合成の定義)

= πA ◦ λx.⟨∗, x⟩ (射写像の定義)

= λx.πA(⟨∗, x⟩)
= λx.x

余評価射の定義より任意の Aの元 aに対して (λx.x)(a) = aであるから、Set(A, πA) ◦ ce(∗) = idA である。

命題 5.4.3（余評価射による対角写像の定義） 対角写像 ∆ : A → Set(B,A)に対して、

∆ = Set(B, πA) ◦ ce
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である。

A×B

A

Set(B,A×B)

Set(B,A)

B

πA Set(B, πA)

ce

Set(B, πA) ◦ ce

証明 5.4.4 Aの任意の元 aに対して、

Set(B, πA) ◦ ce(a) = Set(B, πA)(λx.⟨a, x⟩) (写像の合成の定義)

= πA ◦ λx.⟨a, x⟩ (射写像の定義)

= λx.πA(⟨a, x⟩)
= λx.a

恒等射と同様に、B の任意の元 bに対して λx.a : B → Aは (λx.a)b = aを満たす。よって λx.aは定写像で

あり、λx.a = ∆(a)である。

Set(B, πA) ◦ ce(a) = ∆(a)が成り立つから、∆ = Set(B, πA) ◦ ceである。

6 関手

これまで、似たような性質を持つ対象や射を同時に扱う時、それらの対象に添字をつけて量化してきた。対

象の量化の例として積対象 A× B は圏 Cの任意の対象 Aと任意の対象 B によって添字づけられている。ま

た射の量化の例として、射の積 f × g : ⟨A,B⟩ → ⟨A′, B′⟩ は圏 C の任意の射 f : A → A′、g : B → B′ に

よって添字づけられている。

この章では主に、この添字づけを行うような操作を圏から圏への特殊な写像である関手で一般化する。

定義 6.0.1 ある圏 Cからある圏Dへの関手 F : C→ Dは以下の関数と公理から構成される。

対象関数 Cの対象 AにDの対象 FAを割り当てる写像を持つ必要がある。これを対象関数とよび、

F : Obj(C) → Obj(D)

と表すことにする。

射関数 Cの任意の各対象 A,B において射 f : A → B に圏Dの射 Ff : FA → FB を割り当てる写

像をそれぞれ持つ必要がある。これを射関数とよび、

FA,B : C(A,B) → D(FA,FB)

と表す。また対象 A,B に対してそれぞれ存在する射関数 FA,B を総称して F と呼ぶことにする。

つまり、圏 Cに含まれる任意の射 f : A → B、k : X → Y に対して

F (f) = FA,B(f)

F (k) = FX,Y (k)
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と置き換えてほしい。また対象関数と射関数は記法で区別しないことと、Tf, TAののように括弧

を省略する場合もある。

恒等射の保存 射関数は圏 C の恒等射を D の恒等射に対応させる。つまり F (idA) = idFA が成り

立つ。

射の合成の保存 cod(f) = dom(g)であるとき、F (g ◦ f) = Fg ◦ Ff が成り立つ。

次に関手の具体例を示す。以下の射と対象で構成される圏 C,Dと二つの関手 T : C→ D、S : C→ Dを

考える。

A

B

Cf
g

g ◦ f X

Y

W

Z

i

j

j ◦ i
l

k

k ◦ h
h

C D

そして関手 T の対象関数 T を
T (A) = X, T (B) = Y, T (C) = Z

、関手 S の対象関数 S を
S(A) = X, S(B) = X, S(C) = W

と定義する。

次に、関手 T の射関数 T を
T (f) = i, T (g) = j, T (g ◦ f) = j ◦ i

と定義する。また各対象の恒等射の対応は

T (idA) = idTA

= idX(TA = X)

T (idB) = idTB

= idY (TB = Y )

T (idC) = idTC

= idZ(TC = Z)

とする。

A

B

C

TA

TB

TC

X

Y

Z=f
g

g ◦ f
i

j

j ◦ i
Tf

Tg

T (g ◦ f)

C D
T
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この図での点線は対象の写像的な対応を表しているのであって、実際に射が存在するわけではないことに注意

してほしい。

同様に関手 S の射関数 S を
S(f) = h, S(g) = k, S(g ◦ f) = k ◦ h

と定義する。恒等射の対応は

S(idA) = idSA

= idX(SA = X)

S(idB) = idSB

= idX(SB = X)

S(idC) = idSC

= idW (SC = W )

とする。

A

B

C

SA

SB

SC

X

X

W=f
g

g ◦ f
h

k

k ◦ h
Sf

Sg

S(g ◦ f)

C D
S

関手 S、T が恒等射を保つことは恒等射の定義から用意に分かる。また、恒等射の合成は省略するが、射の

合成の保存は

T (g ◦ f) = j ◦ i (T (g ◦ f)の定義)

= Tg ◦ Tf (Tg, Tf の定義)

S(g ◦ f) = k ◦ h (S(g ◦ f)の定義)

= Sg ◦ Sf (Sg, Sf の定義)

が成り立つことから分かる。

関手 T の例で言えば、圏Dの対象X は TAとして圏Cの対象 Aによって添字付けられた対象であると考

えられる。また、X は別の関手 S によって SA, SB として添字付けられていると考えることもできる。

定義 6.0.2（関手の同一性） 関手 F,G : C→ Dが同一、F = Gであるとは、それぞれの対象関数、射関数

が写像として等しいということである。

命題 6.0.3（図式の圏論的な定義） 添字圏と呼ばれる圏 Jから図式を取りたい圏 Cへの関手は図式である。

例えば以下のように対象 I, J,K と射 i, j で構成される添字圏 Jを図式の骨組み、関手 F : J → Cを図式の

骨組みに圏 C の対象と射を割り当てる操作とする。

すると関手の合成の保存より、図式中の射 f, g の合成射 g ◦ f は図式に必ず存在する。また恒等射の保存よ
り、図式中の対象に必ず恒等射となる射が存在し、関手の合成の保存により実際に恒等射のように振る舞う。

このように関手の性質によって、図式はそれ単体で圏のように振る舞う。
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I

J

K

A

B

Ci
j

j ◦ i
f

g

g ◦ f

J C
F

次に最初に述べた積対象 A×B の添字づけについて実際に関手で定式化する。ただし、積対象 A×B は二つ

の対象 A,B によって添字付けられているが、今回は対象 Aにだけを量化し、対象 B を固定して考える。

定義 6.0.4（積関手） 圏Cが積を持つとき、以下の関数で構成されるある対象 B に対して圏 C から圏 C へ

の関手 −×B : C→ Cを積関手と呼ぶ。

対象関数 対象関数を (−×B)(A) = A×B と定義する。

射関数 圏 C の任意の対象 A,A′ に対する関数 (−×B)A,A′ を任意の射 f : A → A′ に対して

(−×B)A,A′(f) = f × idB : (−×B)(A) → (−×B)(A)

= f × idB : A×B → A′ ×B

と定義する。同様に任意の対象 A,A′ に対して存在する射関数 (− × B)A,A′ を総称して (− × B)

と呼ぶ。

A

A′

A×B

A′ ×B

C C
−×B

f f × idB

恒等射の保存 射影射の対が恒等射になることを用いて (−×B)(idA) = id(−×B)(A) を示せばよい。

(−×B)(idA) = idA × idB (射関数の定義)

= ⟨idA ◦ πA, idB ◦ πB⟩ (射の積の定義)

= ⟨πA, πB⟩ (恒等射の性質)

= idA×B (射影射の対)

= id(−×B)(A) (対象関数の定義)

よって積関手は恒等射を保つことが示せた。

射の合成の保存 任意の対象 A,A′, A′′ と任意の射 f : A → A′, f ′ : A′ → A′′ に対して

(−×B)(f ′ ◦ f) = (−×B)(f ′) ◦ (−×B)(f)
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が成り立つことを、積と合成の交換から示す。

(−×B)(f ′ ◦ f) = (f ′ ◦ f)× idB (射関数の定義)

= (f ′ ◦ f)× (idB ◦ idB) (恒等射の性質)

= (f ′ × idB) ◦ (f × idB) (積と合成の交換)

= (−×B)(f ′) ◦ (−×B)(f) (射関数の定義)

A

A′

A′′

A×B

A′ ×B

A′′ ×B

C C
−×B

f

f ′

f × idB

f ′ × idB

(f ′ ◦ f)× idB

よって積関手は射の合成を保つことが示せた。

命題 6.0.5（関手の同型の保存） 任意の圏 C,Dと任意の関手 F : C→ D、圏 Cの対象 A,B において、

A ∼= B =⇒ FA ∼= FB

が成り立つ。

証明 6.0.6 同型 A ∼= B のある同型射 i : A → B, i−1 : B → Aに対して Fi : FA → FB,F i−1 : FB → FA

も同様に同型射であることを示せばよい。

Fi−1 ◦ Fi = F (i−1 ◦ i) (F の射の合成の保存)

= F (idA) (恒等射の定義)

= idFA (F の恒等射の保存)

Fi ◦ Fi−1 = F (i ◦ i−1) (F の射の合成の保存)

= F (idB) (恒等射の定義)

= idFB (F の恒等射の保存)

Fi−1 ◦ Fi = idFA、Fi ◦ Fi−1 = idFB より、Fi, F i−1 が同型射なる。よって FA ∼= FB が成り立つ。

一般に逆は成り立たないことに注意してほしい。
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6.1 小さい圏の圏

関手は圏から圏への一種の写像であるため、集合の圏のように、圏を対象とし関手を射とするような圏であ

る圏の圏を考えることができそうである。そのためにもまずは合成射、恒等射にあたる関手を定義していく。

定義 6.1.1（合成関手） 関手 F : C→ C′、G : C′ → C′′ を合成した関手 G ◦ F : C→ C′ を以下の要素に

よって定義する。

対象関数 関手 F,Gのそれぞれの対象関数 F,Gに対して G ◦ F の対象関数を G ◦ F と定義する。つ
まり圏 Cの任意の対象 Aに対して

(G ◦ F )(A) = G(FA)

となるような写像である。

射関数 関手 F,Gのそれぞれの射関数 F,Gに対して G ◦ F の射関数を G ◦ F と定義する。つまり圏
Cの任意の対象 A,A′ と任意の射 f : A → A′ に対して

(G ◦ F )(f) = G(Ff) : GFA → GFA′

となるような写像である。

各二対象ごとの射関数も見ていくと、関手 F,Gのそれぞれの関数

FA,A′ : C(A,A′) → C
′(FA,FA′)

GFA,FA′ : C′(FA,FA′) → C
′′(GFA,GFA′)

に対して G ◦ F の関数を

(G ◦ F )A,A′ = GFA,FA′ ◦ FA,A′ : C(A,A′) → C
′′(GFA,GFA′)

となる。このように関手の合成はそれぞれの関手の対象関数、射関数の合成に還元して考える。

A

A′

FA

FA′

GFA

GFA′

C C′ C′′F G

f Ff GFf

また紛らわしくない場合は合成関手 G ◦ F を GF と略すことにする。
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恒等射の保存 　 GF (idA) = idGFA を示せばよい。

GF (idA) = G(F (idA)) (射関数の定義)

= G(idFA) (関手 F の恒等射の保存)

= idGFA (関手 Gの恒等射の保存)

よって合成関手は恒等射を保つ。

射の合成の保存 　 GF (g ◦ f) = GFg ◦GFf を示せばよい。

GF (g ◦ f) = G(F (g ◦ f)) (射関数の定義)

= G(Fg ◦ Ff) (関手 F の射の合成の保存)

= GFg ◦GFf (関手 Gの射の合成の保存)

よって合成関手は射の合成を保つ。

A

A′

A′′

FA

FA′

FA′′

GFA

GFA′

GFA′′

C C′ C′′F G

f

g

Ff

Fg

GFf

GFg

GF (g ◦ f)

定義 6.1.2（恒等関手） 任意の圏 Cの恒等関手 IdC : C→ Cを以下の要素で定義する。

対象関数 対象関数を恒等写像 IdC(A) = Aと定義する。

射関数 射関数を恒等写像 IdC(f) = f と定義する。

恒等射の保存 IdC(idC) = idC = idIdC(C) より恒等射を保つ

射の合成の保存 IdC(g ◦ f) = g ◦ f = IdC(g) ◦ IdC(f)より射の合成を保つ。

定義 6.1.3（小さい圏の圏） 小さい圏の圏 Catは以下の要素で構成される。

集合の圏の時と同様に、小さい圏の「小さい」とは簡単に説明をするのであれば自己言及を防ぐための条件

付けであり、実際に Catは小さい圏ではないため Catの対象にはならない。

対象 　任意の小さい圏

射 　任意の小さい圏A,Bの間の任意の関手 F : A→ B
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射の合成 　関手 F : C→ C′、G : C′ → C′′ に対して合成した関手 G ◦ F : C→ C′ をとる操作を射

の合成とする。

恒等射の存在 任意の圏Aの恒等関手 IdA を恒等射とする。

結合律 H ◦ (G ◦ F ) = (H ◦ G) ◦ F が合成可能な任意の関手 F,G,H で成り立つことを示せばよい。

二つの関手が等しいことを示すにはそれぞれを構成する対象関数と射関数が等しいことを示せばよ

い。対象関数については、関手 F,G,H の対象関数 F,G,H に対して H ◦ (G ◦ F ) = (H ◦G) ◦ F
は明らかに成り立つ。射関数についても写像の結合律に還元すると、

(H ◦ (G ◦ F ))A,A′ = HGFA,GFA′ ◦ (G ◦ F )A,A (射関数の合成の定義)

= HGFA,GFA′ ◦ (GFA,FA′ ◦ FA,A′) (射関数の合成の定義)

= (HGFA,GFA′ ◦GFA,FA′) ◦ FA,A′ (写像の結合則)

= (H ◦G)FA,FA′ ◦ FA,A′ (射関数の合成の定義)

= (H ◦ (G ◦ F ))A,A′ (射関数の合成の定義)

となり、射関数においても結合則が成り立つ。

単位元律 任意の圏Cの恒等関手 IdCと任意の関手 F : X→ C、G : C→ Yにおいて IdC ◦F = F、

G ◦ IdC = Gが成り立つことを示せばよい。

恒等関手の対象関数、射関数ともに恒等写像

IdC = idObj(A) : Obj(A) → Obj(A)

IdCA,A′ = idC(A,A′) : C(A,A′) → C(A,A′)

となるため、写像の単位元律より IdC ◦ F = F、G ◦ IdC = Gが成り立ち単位元律が成り立つ。

6.2 積圏と一点離散圏

一般的に圏は対象の集合や射集合を具体的な元を指定することで定義して、それが公理を満たすか確認して

いたが、すでに集合や写像は圏論的な操作で扱うことができる。そのため、これから Catにおける積対象と

なる積圏と、終対象となる一点離散圏、その周辺の関手を集合の圏を用いて定義していく。

定義 6.2.1（積圏） ある圏A,Bに対する積圏A×Bを以下の要素で定義する。

対象
Obj(A×B) = Obj(A)×Obj(B)

すなわち、圏 Aと圏 Bの任意の対象 A,B の対 ⟨A,B⟩が A×Bの対象であり、紛らわしくない
ように

⟨A,B⟩ = [A,B]

と表記する。
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また Obj(A)×Obj(B)は直積集合であり、集合の圏の積対象であるが、圏 A×Bの対象 [A,B]

そのものは積の普遍性を持たないことに注意してほしい。今回積とみなすのは対象ではなく圏の方

である。

射 任意の対象 [A,B], [A′, B′]に対してその射集合をそれぞれ

(A×B)([A,B], [A′, B′]) = A(A,A′)×B(B,B′)

と定義する。

すなわち、圏Aの射 f : A → A′ と圏 Bの射 g : B → B′ の元の対

⟨f, g⟩ : [A,B] → [A′, B′]

がA×Bの射であり、対象と同様に
⟨f, g⟩ = [f, g]

と表記する。射の対と同じ表記であるが、対象の表記と同様に積の普遍性は持たないため射の対で

はない。同様にA(A,A′)×B(B,B′)も直積集合であり、集合の圏の積対象である。

A

A′

B

B′

[A,B]

[A′, B′]

f g [f, g]

A B A×B

射の合成 射 [f, g] : [A,B] → [A′, B′]と [f ′, g′] : [A′, B′] → [A′′, B′′]の合成射

[f ′, g′] ◦ [f, g] : [A,B] → [A′, B′]

を
[f ′, g′] ◦ [f, g] = [f ′ ◦ f, g′ ◦ g]

と定義する。

A

A′

A′′

B

B′

B′′

[A,B]

[A′, B′]

[A′′, B′′]

f

f ′

g

g′

[f, g]

[f ′, g′]

[f ′ ◦ f, g′ ◦ g]

A B A×B
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恒等射の存在 対象 [A,B]の恒等射 id[A,B] を

id[A,B] = [idA, idB ]

と定義する。

結合律 ([f ′′, g′′] ◦ [f ′, g′]) ◦ [f, g] = [f ′′, g′′] ◦ ([f ′, g′] ◦ [f, g])を示せばよい。積圏の射の合成の定義
を用いて圏の結合律に還元する。

([f ′′, g′′] ◦ [f ′, g′]) ◦ [f, g] = [(f ′′ ◦ f ′) ◦ f, (g′′ ◦ g′) ◦ g] (積圏の射の合成の定義)

= [f ′′ ◦ (f ′ ◦ f), g′′ ◦ (g′ ◦ g)] (圏A,Bの結合則)

= [f ′′, g′′] ◦ ([f ′, g′] ◦ [f, g]) (積圏の射の合成の定義)

よって成り立つ。

単位元律 任意の対象 [A,B] と恒等射 id[A,B]、任意の射 [f, g] : [X,Y ] → [A,B]、[f ′, g′] : [A,B] →
[X ′, Y ′]において

id[A,B] ◦ [f, g] = [f, g]], [f ′, g′] ◦ id[A,B] = [f ′, g′]

が成り立つことを示せばよい。同様に積圏の射の合成の定義を用いて圏の結合律に還元する。

id[A,B] ◦ [f, g] = [idA, idB ] ◦ [f, g] (圏A×Bの恒等射の定義)

= [idA ◦ f, idB ◦ g] (圏A×Bの射の合成の定義)

= [f, g] (圏A,Bの単位元律)

[f ′, g′] ◦ id[A,B] = [f ′, g′] ◦ [idA, idB ] (圏A×Bの恒等射の定義)

= [f ′ ◦ idA, g′ ◦ idB ] (圏A×Bの射の合成の定義)

= [f ′, g′] (圏A,Bの単位元律)

よって単位元律が成り立つ。

定義 6.2.2（射影関手） 射影関手 ΠL,A×B : A×B → Aを以下の写像で定義する。また射影射と同様に紛

らわしくない場合に ΠL,A×B = ΠA と表記する。

対象関数 積圏の対象の定義より、圏 A×Bの対象の集合は Obj(A) × Obj(B)である。これを集合

の圏における積とみなし、射影写像

ΠA = πObj(A) : Obj(A)×Obj(B) → Obj(A)

を対象関数とする。すなわち ΠA([A,B]) = Aとなるような写像である。

射関数 対象関数と同様に射集合A(A,A′)×B(B,B′)の射影写像

ΠA = πA(A,A′) : A(A,A′)×B(B,B′) → A(A,A′)

を射関数とする。すなわち ΠA([f, g]) = f となるような写像である。

恒等射の保存 ΠA(idA×B) = ΠA([idA, idB ]) = idA より恒等射を保つ
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射の合成の保存 元の圏の結合則に還元する。

ΠA([f
′, g′] ◦ [f, g]) = ΠA([f

′ ◦ f, g′ ◦ g]) (A×Bの射の合成の定義)

= f ′ ◦ f (射関数の定義)

= ΠA([f
′, g′]) ◦ΠA([f, g]) (射関数の定義)

よって射の合成を保つ。

また同様に ΠR,A×B : A×B→ Bも定義できる。

定義 6.2.3（関手の対） 関手 F : X → Aと G : X → Bの対である関手の対 ⟨F,G⟩ : X → A×Bを以下
の写像で定義する。

対象関数 関手 F,Gの対象関数 F : Obj(X) → Obj(A)、G : Obj(X) → Obj(B)の対

⟨F,G⟩ : Obj(X) → Obj(A×B)

=⟨F,G⟩ : Obj(X) → Obj(A)×Obj(B)

を対象関数とする。すなわち圏 Xの対象 X に対して ⟨F,G⟩(X) = [FX,GX]となるような写像

である。

射関数 関手 F,G の対象 X,X ′ に対する射関数 FX,X′ : X(X,X ′) → A(FX,FX ′), GX,X′ :

X(X,X ′) → B(GX,GX ′)の対

⟨F,G⟩X,X′ : X(X,X ′) → A×B(⟨FX,GX⟩, ⟨FX ′, GX ′⟩)
=⟨FX,X′ , GX,X′⟩ : X(X,X ′) → A(FX,FX ′)×B(GX,GX ′)

を射関数とする。すなわち射 f : X → X ′ に対して

⟨F,G⟩(f) = [Ff,Gf ] : [FX,GX] → [FX ′, GX ′]

となるような写像である。

X

X ′

FX

FX ′

GX

GX ′

[FX,GX]

[FX ′, GX ′]

f Ff Gf [Ff,Gf ]

X A B A×B

恒等射の保存

⟨F,G⟩(idX) = [F (idX), G(idX)] (射関数の定義)

= [idFX , idGX ] (F,Gの恒等射の保存)

= id[FX,GX] (積圏の恒等射の定義)

よって恒等射を保つ
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射の合成の保存

⟨F,G⟩(f ′ ◦ f) = [F (f ′ ◦ f), G(f ′ ◦ f)] (射関数の定義)

= [Ff ′ ◦ Ff,Gf ′ ◦Gf ] (F,Gの射の合成の保存)

= [Ff ′, Gf ′] ◦ [Ff,Gf ] (積圏の射の合成の定義)

= ⟨F,G⟩(f ′) ◦ ⟨F,G⟩(f) (射関数の定義)

よって射の合成を保つ。

命題 6.2.4（Catの積） 積圏A×Bと射影関手ΠA,ΠBの組 (A×B,ΠA,ΠB)はCatにおける積である。

証明 6.2.5 積 (A×B,ΠA,ΠB) において、圏 X、関手 F : X → A、G : X → B で構成される任意の組

(X, F,G)に対して、ΠA ◦ ⟨F,G⟩ = F, ΠB ◦ ⟨F,G⟩ = Gが成り立つような関手の対 ⟨F,G⟩ : X→ A×Bが
一意に存在することを示せばよい。

A A×B B

X

F G

ΠA ΠB

⟨F,G⟩

端的に述べるなら積圏、関手の対、射影関手の各々が持つ対象関数、射関数はそれぞれ積対象、射の対、射影

射で構成されることから、積の普遍性を満たすことを示すのは難しくない。

関手 F,G の対象関数 F,G、射影関手 ΠA,ΠB の対象関数 πObj(A), πObj(B)、そして関手の対の対象関数

⟨F,G⟩ は、その定義により積の図式となる。すなわち対象関数 F,G に対して対象関数 ⟨F,G⟩ は一意に存在
する。

Obj(A) Obj(A)×Obj(B)

Obj(A×B)

Obj(B)

Obj(X)

F G

πObj(A) πObj(B)

⟨F,G⟩

各射関数による積の図式は省略するが、同様に射関数 ⟨F,G⟩が一意に存在することが分かる。よって可換性を
満たす対象関数と射関数も一意に存在することから、関手の対は積圏における射の対となり、(A×B,ΠA,ΠB)

は積の普遍性を満たす。

定義 6.2.6（一点離散圏） 一つの対象と一つの恒等射で構成される圏 1を一点離散圏とよぶ。

命題 6.2.7（Catの終対象） 1は Catにおける終対象である。

証明 6.2.8 任意の圏Cから一点離散圏 1への関手 !C を考える。まず 1の対象 ∗と射 id∗ は一つしか存在し

ない。そのため一点集合を 1として
Obj(1) = 1, 1(∗, ∗) = 1

37



が成り立つ。

よって対象関数 !C は

!C : Obj(C) → Obj(1)

=!C : Obj(C) → 1

となり一点集合への写像であることがわかる。よって任意の対象 Aに対して !C(A) = ∗が成り立ち、このよ
うな対象関数が一意に存在することが分かった。

また任意の二対象 A,B に対する射関数は

!CA,B : C(A,B) → 1(!C(A), !C(B))

=!CA,B : C(A,B) → 1(∗, ∗)
=!CA,B : C(A,B) → 1

と書ける。よって二対象 A,B に対する各射関数も一意に存在することが分かった。

関手 !C の二つの写像が圏 Cに対して一意に存在することわかる。よって任意の圏 Cから一点離散圏 1へ

の関手は一意に存在するから、一点離散圏 1は Catにおける終対象であることが示せた。

命題 6.2.9（対象と関手） 任意の圏 Cの元、つまり関手 A : 1→ Cは圏 Cの対象とみなせる。

証明 6.2.10 関手 A : 1→ Cは対象関数 F : Obj(1) → Obj(C)、射関数 F : 1(∗, ∗) → C(F (∗), F (∗))で構
成される。このとき、Obj(1)は一点集合であるから、対象関数 F は Obj(C)の元である。

また射関数も同様に C(F (∗), F (∗))の元であるが、恒等射の保存より写される射は恒等射ただ一つであり、
射関数は対象関数に対して一通りにしか定義できないから考慮しなくてもよい。

よって関手 A : 1→ Cは圏 Cの対象とみなせる。

集合の圏では A ∼= Set(1, A)が成り立ったから、Catでも A ∼= Cat(1,A)のような主張が成り立つと考え

るかもしれないが、Cat(1,A)はただの射集合、関手の集合であり、Catの対象にはならないから同型射と

なる関手を取ることができない。その上、この関手の集合は対象の集合であり圏の射の情報は全く含まれな

い。そのためこのような同型を考えるには Catにおける射集合的な圏を考える必要がある。この問題は後に

関手圏と呼ばれる圏を定義することで解決する。

関手としての対象の話に戻ると、積圏 A×Bの対象を [A,B]と表したが、実際に対象 A : 1 → Aと対象

B : 1→ Bの関手の対 ⟨A,B⟩ : 1→ A×BはA×Bの対象になる。

6.3 特殊な関手

ある圏 Cの二対象 A,B の射集合 C(A,B)は A,B で添字付けられていて、射写像 C(A, f)も射で添字付

けられているように見える。実際にこの操作は関手であるが、この段階ではこの操作を関手で表すことが難し

い。そのため前提知識として双関手、反変関手を定義し見ていく。

最初に対象や射を二つ取るような 2変数関数のような関手、双関手について考える。

定義 6.3.1（双関手） 積圏からの関手、つまり F : A×B→ Cとなるような関手を双関手とする。

また積圏の任意の対象 [A,B]に対し、

F ([A,B]) = F (A,B)
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と略記する。さらに積圏の射 [f, idB ] : [A,B] → [A,B′]において

F ([f, idB ]) = F (f,B)

と表記する。

圏 Aの射 f と圏 Bの射 g がどのように圏 Cに写されるのかを以下の可換図式で確認してほしい。等式とし

ては示さないが、右の図式は関手の合成の保存によって可換になることに注意してほしい。

A

A′

B B′

[A,B]

[A′, B]

[A,B]

[A′, B′]

F (A,B)

F (A′, B)

F (A,B′)

F (A′, B′)

A

B

A×B C

f

g

[f, idB ] [f, idB′ ]

[idA, g]

[idA′ , g]

[f, g]
F (f,B) F (f,B′)

F (A, g)

F (A′, g)

F (f, g)

F

双関手は関手を量化とみなすのであれば、複数の圏のそれぞれの対象、射で同時に量化していると考えられる。

次に双関手の例として積関手 −×B : C→ Cを双関手に拡張しようと思う。

定義 6.3.2（双積関手） 積を持つ圏 C上の双積関手 −×− : C×C→ Cを以下の写像で定義する。

対象関数 対象関数を積圏 C×Cの任意の対象 [A,B]に対して

(−×−)(A,B) = A×B

と定義する。

射関数 二対象 [A,B], [A′, B′]に対する射関数を任意の射 [f, g] : [A,B] → [A′, B′]に対して

(−×−)[A,B],[A′,B′](f, g) = f × g

と定義する。

[A,B]

[A′, B′]

A×B

A′ ×B′

C×C C

[f, g] f × g

(−×−)
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恒等射の保存 (−×−)(id[A,B]) = id(−×−)(A,B) を示せばよい。

(−×−)(id[A,B]) = idA × idB (射関数の定義)

= [idA ◦ πA, idB ◦ πB ] (射の積の定義)

= idA×B (射影射の対)

= id(−×−)(A,B) (対象関数の定義)

よって恒等射を保つ。

射の合成の保存 (−×−)(f ′, g′) ◦ (−×−)(f, g) = (−×−)([f ′, g′] ◦ [f, g])を示せばよい。

(−×−)(f ′, g′) ◦ (−×−)(f, g) = (f ′ × g′) ◦ (f × g) (射関数の定義)

= (f ′ ◦ f)× (g′ ◦ g) (積と合成の交換)

= (−×−)(f ′ ◦ f, g′ ◦ g) (射関数の定義)

= (−×−)([f ′ ◦ f, g′ ◦ g])
= (−×−)([f ′, g′] ◦ [f, g]) (積圏の射の合成の定義)

よって射の合成を保つ。

対象の積と圏の積が紛らわしいが、まず圏の積の対象 [A,B]は圏 Cの Aと B の積が存在しなくとも定義す

ることができ、その点で対象の積 A×B より一般的な概念だと考えられる。よってイメージとしては圏 Cの

外側C×Cで定義した対象の積もどき [A,B]を圏Cに積対象 A×B として挿入する操作が関手 (−×−)と

考えられる。ただし、双積関手で写された対象が積の普遍性を満たすかどうかは現段階では説明できない。

また以前に圏Cの射の積と積圏C×Cの射の振る舞いが似ていることについて述べたが、実際に関手とし
て二つの射の関係性を示すことができた。

次に反変関手を定義するのであるが、これは厳密には関手ではない。しかし関手として扱う方法があり、そ

のために圏の双対について説明する。

定義 6.3.3（双対圏） ある圏 Cに対する双対圏 Cop を以下の要素で定義する。

対象 　 Obj(Cop) = Obj(C)とする。

また圏Cの対象 Aに対応する双対圏Cop の対象も Aであるが、Cop の対象は Aop として表記上

区別する。

射 　任意の二対象 Aop, Bop に対して射集合を

C
op(Bop, Aop) = C(A,B)

と定義する。同様に射 f : A → B に対応する射を表記上 fop : Bop → Aop とする。圏 Cと双対

圏 Cop では射の向きが入れ替わっていることに注意してほしい。
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A

B

Aop

Bop

C Cop

f fop

射の合成 圏 C の射 f : A → B、g : B → C の合成射 g ◦ f : A → C に対して、双対圏 Cop の射

fop : Bop → Aop、gop : Cop → Bop の合成射を

(g ◦ f)op = fop ◦ gop : Cop → Aop

と定義する。圏 Cと Cop では射の合成の順序が入れ替わっていることに注意してほしい。

A

B

C

Aop

Bop

Cop

C Cop

f

g

g ◦ f

fop

gop

(g ◦ f)op

恒等射の存在 圏 Cの任意の恒等射 idA : A → Aに対して、双対圏 Cop の恒等射を

(idA)
op = idAop : Aop → Aop

と定義する。

結合律 　合成可能な任意の射 fop, gop, hop において、

(fop ◦ gop) ◦ hop = (g ◦ f)op ◦ hop

= (h ◦ (g ◦ f))op

= ((h ◦ g) ◦ f)op

= fop ◦ (h ◦ g)op

= fop ◦ (gop ◦ hop)

となるので結合律を満たす。

単位元律 任意の恒等射 idAop、任意の射 fop : Xop → Aop、gop : Aop → Y opに対し idAop◦fop = fop、
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gop ◦ idAop = gop を示せばよい。

idAop ◦ fop = idA
op ◦ fop (双対圏の恒等射の定義)

= (f ◦ idA)op (双対圏の射の合成の定義)

= fop (単位元律)

gop ◦ idAop = gop ◦ idAop (双対圏の恒等射の定義)

= (idA ◦ g)op (双対圏の射の合成の定義)

= gop (単位元律)

よって単位元律を見たす。

圏の射をすべて反転した圏が双対圏であったが、圏から圏への関手から、双対圏から双対圏への関手を構成す

ることができる。記述がややこしくなってしまったが、定義としては反転した射を反転した射に写すだけで

ある。

定義 6.3.4（双対関手） ある圏 C,D に対する双対圏 Cop,Dop と関手 F : C → D に対して、双対関手

F op : Cop → Dop を以下の要素で定義する。

対象関数 対象関数 F op : Cop → Dop を任意の対象 Aop に対して

F op(Aop) = (FA)op

と定義する。

射関数 対象関数と同様に、射関数

F op
Aop,Bop : Cop(Aop, Bop) → D

op((FA)op, (FB)op)

を任意の射 f : Aop → Bop に対して

F op(fop) = (Ff)op

と定義する。

Aop

Bop

(FA)op

(FB)op

Cop Dop

fop (Ff)op

F op

A

B

FA

FB

C D

f Ff

F

恒等射の保存 元の関手 F の恒等射の保存に還元して F op(idAop) = id(FA)op を示す

F op(idAop) = F op(idA)
op (双対圏の恒等射の定義)

= (F (idA))
op (双対関手の射関数の定義)

= (idFA)
op (F の恒等者の保存)

= id(FA)op (双対圏の恒等射の定義)
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射の合成の保存 同様に元の関手の合成の保存に還元して

F op(fop ◦ gop) = F opfop ◦ F opgop

を示す。

F op(fop ◦ gop) = F op(g ◦ f)op (双対圏の射の合成)

= (F (g ◦ f))op (双対関手の射関数の定義)

= (Fg ◦ Ff)op (F の射の合成の保存)

= (Fg)op ◦ (Ff)op (双対圏の射の合成)

= F opfop ◦ F opgop (双対関手の射関数の定義)

双対関手では反転した射を反転したまま写した。次に定義する反変関手では通常の射を反転した射に写すよ

うな捻れた操作を考える。この捻れによって関手の定義とは異なるものになることを注意してほしい。

定義 6.3.5（反変関手） 圏 Cから圏 Dへの反変関手と呼ばれる圏の間の写像 F : C → Dを以下の写像と

公理で定義する。

対象関数 Cの対象 AにDの対象 FAを割り当てる対象関数

F : Obj(C) → Obj(D)

を持つ必要がある。

これは通常の関手と同じである。

射関数 Cの任意の各対象 A,B において射 f : A → B に圏Dの射 Ff : FB → FAを割り当てる射

関数
FA,B : C(A,B) → D(FB,FA)

を持つ必要がある。射の向きが変わってしまうが、関手と同様にこれも同様に対象 A,B に対して

それぞれ存在する射関数 FA,B を総称して F と呼ぶことにする。

A

B

FA

FB

C D

f Ff

F

双対圏を取る操作と同じように、射を写すときは射の向きを逆にする。

恒等射の保存 F (idA) = idFA が任意の恒等射で成り立つ。

射の合成の保存 合成可能な任意の二射 f, g において

F (g ◦ f) = Ff ◦ Fg

が成り立つ。
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A

B

C

FA

FB

FC

C D

f

g

Ff

Fg

F (g ◦ f) = Ff ◦ Fg

F

双対圏の射の合成と同じように、合成射を写すときは合成の順序を逆にして写す。

反変関手は関手とついているが、双対関手とは違い以前定義した関手の性質を満たさず、関手とはならない。

そのため区別が必要な場合、一般の関手を共変関手と呼ぶことにする。

また反変関手 F : C→ Dは双対圏によって共変関手 F : Cop → Dとみなせることが図式から分かる。

A

B

FA

FB

C D

f Ff

F

A

B

Aop

Bop

FA

FB

C Cop D

fopf Ff

F

6.4 Hom関手

いよいよ射集合を取る操作が関手であることを示そう。その前に射写像を取る操作が関手の性質を満たすこ

とを先に示しておく。

命題 6.4.1（共変射写像の恒等射の保存） 圏 Cの任意の対象 X,Aにおいて

C(X, idA) = idC(X,A)

が成り立つ。

X

X

A

A

C(X,A)

C(X,A)

C Set

C(X, idA)idA

g

g
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証明 6.4.2 任意の射 g : X → Aに対して

C(X, idA)(g) = idA ◦ g (共変射写像の定義)

= g (単位元律)

= idC(X,A)(g) (Setの恒等射の定義)

よって C(X, idA) = idC(X,A) が成り立つ。

命題 6.4.3（共変射写像の合成の保存） 圏 C の任意の対象 X,A,B,C と射 f : A → B、g : B → C、

h : X → Aに対して、
C(X, g ◦ f) = C(X, g) ◦C(X, f)

が成り立つ。

X

X

X

A

B

C

C(X,A)

C(X,B)

C(X,C)

C Set

C(X, f)

C(X, g)

f

g

h

f ◦ h

g ◦ (f ◦ h)

証明 6.4.4 任意の射 h : X → Aに対して

C(X, g ◦ f)(h) = (g ◦ f) ◦ h (共変射関数の定義)

= g ◦ (f ◦ h) (結合則)

= C(X, g)(f ◦ h) (共変射関数の定義)

= C(X, g)(C(X, f)(h)) (共変射関数の定義)

= C(X, g) ◦C(X, f)(h) (写像の合成の定義)

よって C(X, g ◦ f) = C(X, g) ◦C(X, f)が成り立つ。

定義 6.4.5（共変 Hom関手） 任意の圏 Cとそのある対象 X における共変 Hom関手 C(X,−) : C → Set

を以下の要素で定義する。

対象関数 圏 Cの任意の対象 Aに対して対象関数を

C(X,−) : Obj(C) → Obj(Set)

C(X,−)(A) = C(X,A)

と定義する。
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射関数 圏 Cの任意の対象 A,B、射 f : A → B に対して射関数を

C(X,−)A,B : C(A,B) → Set(C(X,A),C(X,B))

C(X,−)A,B(f) = C(X, f)

と定義する。

A

B

C(X,A)

C(X,B)

C Set

C(X, f)f

C(X,−)

恒等射の保存 共変射写像の合成の保存より、C(X, idA) = idC(X,A) が成り立つ。

射の合成の保存 共変射写像の恒等射の保存より、C(X, g ◦ f) = C(X, g) ◦C(X, f)が成り立つ。

また反変射写像をとる操作を射関数とした関手は反変関手として定義する。

定義 6.4.6（反変 Hom関手） 任意の圏 C とそのある対象 X における反変 Hom 関手 C(X,−) : Cop →
Setを以下の要素で定義する。

対象関数 圏 Cの任意の対象 Aに対して対象関数を

C(−, X) : Obj(C) → Obj(Set)

C(−, X)(A) = C(X,A)

と定義する。

射関数 圏 Cの任意の対象 A,B、射 f : A → B に対して射関数を

C(−, X)A,B : C(A,B) → Set(C(B,X),C(A,X))

C(−, X)A,B(f) = C(f,X)

と定義する。

A

B

C(A,X)

C(B,X)

C Set

C(f,X)f

C(−, X)

恒等射の保存 共変射写像の合成の保存と同様に C(idA, X) = idC(A,X) が成り立つ。
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射の合成の保存 共変射写像の恒等射の保存と同様に C(g ◦ f,X) = C(f,X) ◦C(g,X)が成り立つ。

さて射集合、射写像を取る操作が関手であることを示せたから、これらが関手としてどのような性質をもつの

か少し確認する。

命題 6.4.7（Hom関手の積の保存） 圏 Cの積 A×B に対して、

C(X,A×B) ∼= C(X,A)×C(X,B)

が成り立つ。

証明 6.4.8 C(X,A)×C(X,B)は C(X,A)と C(X,B)の積であるが、C(X,A×B)も同様にC(X,A)と

C(X,B)の積であることを示せばよい。射影射をそれぞれ

C(X,πA) : C(X,A×B) → C(X,A)

C(X,πB) : C(X,A×B) → C(X,B)

として、組 (C(X,A×B),C(X,πA),C(X,πB))が積の普遍性を満たすことを証明する。

Set

C(X,A) C(X,A×B) C(X,B)

Y

C(X,πA) C(X,πB)

f g

まずは一般の Y で考えるのではなく終対象 1 に限定して考える。任意の射 i : 1 → C(X,A) と j : 1 →
C(X,A)とすると、A ∼= Set(1, A)より i, j は圏 Cにおける射 i : X → A、j : X → B である。

Set

C(X,A) C(X,A×B) C(X,B)

1

C(X,πA) C(X,πB)

i j
⟨i, j⟩

C

A A×B B

X

πA πB

i j
⟨i, j⟩

この時、⟨i, j⟩ : X → A×B なる射が i, j に対して一意に存在するが、A ∼= Set(1, A)より、C(X,A×B) ∼=
Set(1,C(X,A × B))が成り立つから Setの射 ⟨i, j⟩ : 1 → C(X,A × B)が一意に存在し、値の適用と元の

合成の同値性によって図式を可換にする。

さて、これを任意の対象 Y に拡張する。任意の射 f : Y → C(X,A)、g : Y → C(X,B)と元 y : 1 → Y を

考える。すると、先程の結果から f(y), g(y)に対して射の対 ⟨f(y), g(y)⟩が一意に定まるのだった。
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1

Set

C(X,A) C(X,A×B) C(X,B)

Y

C(X,πA) C(X,πB)

f g

f(y) g(y)

y

1

Set

C(X,A) C(X,A×B) C(X,B)
C(X,πA) C(X,πB)

f(y) g(y)
⟨f(y), g(y)⟩

⟨f(y), g(y)⟩は任意の元 y に対して一意に存在するから、新しい射 ⟨f, g⟩ : Y → C(X,A×B)を

⟨f, g⟩(y) = ⟨f(y), g(y)⟩

と定義できる。また

C(X,πA) ◦ ⟨f, g⟩(y) = C(X,πA)(⟨f(y), g(y)⟩) (⟨f, g⟩の定義)

= f(y) (Y = 1の時の普遍性)

であるから ⟨f, g⟩は f, g における射の対である。仮に射 h : Y → C(X,A × B)が存在して f, g の射の対だ

としても、C(X,πA) ◦ h(y) = f(y)となり、Y = 1の時の射の対の一意性から h(y) = ⟨f(y), g(y)⟩となり、
h = ⟨f, g⟩が成り立つ。よってこれは積であり、

C(X,A×B) ∼= C(X,A)×C(X,B)

となる。

かなり長い証明になってしまったが、C(X,A×B) ∼= C(X,A)×C(X,B)を示すだけなら同型射となるよ

うな射を定義して同型射であることを証明すればよい。こちらの方が簡単ではあるが、射集合を用いた議論に

慣れてもらうためこのように証明した。

さてこの同型の意味を考えると、任意の二射 f : X → A、g : X → B と射の対 ⟨f, g⟩ : X → A×B が一対

一対応をする、ということになる。ただし現段階では必ずしも逆は成り立たない。

また、証明中では特に区別しなかったが、集合の圏の積による射の対を [f, g] : 1 → C(X,A) ×C(X,B)、

圏 Cの積による射の対を ⟨f, g⟩ : X → A×B として、同型射をそれぞれ、

i : C(X,A×B) → C(X,A)×C(X,B)

i−1 : C(X,A)×C(X,B) → C(X,A×B)

とすると、
i(⟨f, g⟩) = [f, g], i−1([f, g]) = ⟨f, g⟩

となる射であることが、積の一意性の証明から分かる。つまり、これらの同型射は、圏 Cの射の対と集合の

圏の射の対を相互に変換する写像であることが分かる。
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これらの射が既存の射を用いてどのように構成されるかを示したいところではあるが、射の対の種類が更に

増えてややこしくなってしまうため、ここでは結果だけを示した。

次に自明ではあるが、共変 Hom関手が終対象を保つことを同様に証明する。

命題 6.4.9（Hom関手の終対象の保存） 圏 Cの終対象 1と圏 Setの任意の対象 X と終対象 I に対して

C(X, 1) ∼= I

が成り立つ。

証明 6.4.10 圏 Cにおける終対象の定義から、C(X, 1)は要素を一つしか持たない集合である。この集合は

一点集合であり、集合の圏における終対象の定義から、C(X, 1) もまた終対象であり、終対象の一意性より

C(X, 1) ∼= I である。

次に積関手を双積関手に一般化したように、共変 Hom関手、反変 Hom関手を双関手として定義する。

定義 6.4.11（双 Hom関手） 任意の圏 Cにおける双 Hom関手 C(−,−) : Cop ×C → Setを以下の要素

で定義する。

対象関数 積圏 Cop ×Cの任意の対象 [A,B]に対して対象関数を

C(−,−) : Obj(Cop ×C) → Obj(Set)

C(−,−)([A,B]) = C(A,B)

と定義する。

射関数 射関数を定義する前に共変射写像、反変射写像の双 Hom関手版を定義する。圏Cop の任意の

射 fop : Aop → A′op、つまり圏 Cの射 f : A′ → Aと圏 Cの任意の射 g : B → B′ に対し射写像

C(f, g) : C(A,B) → C(A′, B′)

を任意の射 h : A → B において、

C(f, g) = C(f,B′) ◦C(A, g)

= C(A′, g) ◦C(f,B)

C(f, g)(h) = g ◦ h ◦ f

と定義する。

A

A′

B

B′

f g

h

g ◦ h ◦ f

C(A,B)

C(A′, B′)

C(f, g)

C Set
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圏 Cop ×Cの任意の対象 [A,B], [A′, B′]、射 f : A → B に対して射関数を

C(−,−) : (Cop ×C)([A,B], [A′, B′]) → Set(C(A,B),C(A′, B′))

C(−,−)([f, g]) = C(f, g)

と定義する。

[A,B]

[A′, B′]

[f, g]

C(A,B)

C(A′, B′)

C(f, g)

C Set

C(−,−)

恒等射の保存 圏 Cop ×Cの任意の対象 [A,B]に対して

C(−,−)(id[A,B]) = idC(−,−)([A,B]) : C(A,B) → C(A,B)

を示せばよい。

任意の積圏の射 f : A → B に対して

C(−,−)(id[A,B])(f) = C(−,−)([idA, idB ])(f) (積圏の恒等射の定義)

= C(idA, idB)(f) (対象関数の定義)

= idB ◦ f ◦ idA (射写像の定義)

= f (圏 Cの単位元律)

= idC(A,B)(f) (Setの単位元律)

= idC(−,−)([A,B])(f) (対象関数の定義)

よって C(−,−)(id[A,B]) = idC(−,−)([A,B]) が成り立ち恒等射の保存が成り立つ。

射の合成の保存 Set の任意の射写像 C(f, g) : C(A,B) → C(A′, B′)、C(f ′, g′) : C(A′, B′) →
C(A′′, B′′)に対して

C(f ′, g′) ◦C(f, g) = C(f ◦ f ′, g′ ◦ g)

が成り立てばよい。

圏 Cの任意の射 h : A → B に対して

(C(f ′, g′) ◦C(f, g))(h) = (C(f ′, g′))(g ◦ h ◦ f) (射写像の定義)

= g′ ◦ (g ◦ h ◦ f) ◦ f ′ (射写像の定義)

= (g′ ◦ g) ◦ h ◦ (f ◦ f ′) (結合律)

= C(f ◦ f ′, g′ ◦ g)(h) (射写像の定義)

よって C(f ′, g′) ◦C(f, g) = C(f ◦ f ′, g′ ◦ g)となり射の合成の保存が成り立つ。

50



双積関手、双 Hom関手を定義したときは完全に新しい関手として対象関数、射関数から定義した。しかし、

これらの例のように、右側と左側の関手がそれぞれ定まっていて、ある条件を満たしていれば二つの関手から

双関手を定義できる。

メリットとしてこの定義を用いれば双関手の恒等射の保存と合成の保存を個別に証明しなくても済む。

定義 6.4.12（二つの関手による双関手の定義） 圏Bの任意の対象 B に対して定義される関手 FB : A→ C

と、圏Aの任意の対象 Aに対して定義される関手 GA : B→ Cが存在し、任意の二対象 A,B に対して

FBA = GAB

が成り立ち、 任意の二射 f : A → A′、g : B → B′ に対して

GA′g ◦ FBf = FB′f ◦GAg

が成り立つとする。

A A′

FBA FBA
′

FB′A FB′A′

A C

f

FBf

FB′f

FB

FB′

B

B′ GAB GA′B

GAB
′ GA′B′

B C

g GAg GA′g

GA

GA′

この時、双関手 H : A×B→ Cを

対象関数 対象関数
H : Obj(A×B) → Obj(C)

を積圏の任意の対象 [A,B]に対して

H(A,B) = FBA = GAB

と定義する。

射関数 射関数

H[A,A′],[B,B′] : A×B([A,B], [A′, B′]) → C(H(A,B),H(A′, B′))

を積圏の任意の射
[f, g] : [A,B] → [A′, B′]

に対して、
H[A,A′],[B,B′]([f, g]) = GA′g ◦ FBf = FB′f ◦GAg

と定義する。

51



恒等射の保存 H(id[A,B]) = idH(A,B) を示せばよい。

H(id[A,B]) = H(idA, idB) (積圏の恒等射の定義)

= GA(idB) ◦ FB(idA) (双関手の射関数)

= idH(A,B) ◦ idH(A,B) (関手の恒等射の保存)

= idH(A,B) (積圏の単位減律)

よって恒等射を保存する。

射の合成の保存 H(f ′, g′) ◦H(f, g) = H(f ′ ◦ f, g′ ◦ g)を示せばよい。

H(f ′, g′) ◦H(f, g) = (GA′′g′ ◦ FB′f ′) ◦ (GA′ ◦ FBf) (射関数の定義)

= GA′′g′ ◦ (FB′f ′ ◦GA′) ◦ FBf (積圏の結合律)

= GA′′g′ ◦GA′′g ◦ FBf
′ ◦ FBf (射関数の定義)

= (GA′′g′ ◦GA′′g) ◦ (FBf
′ ◦ FBf) (積圏の結合則)

= GA′′(g′ ◦ g) ◦ FB(f
′ ◦ f) (GA′′ と FB の合成の保存)

= H(f ′ ◦ f, g′ ◦ g) (射関数の定義)

証明が少し複雑になってしまったが、何とか証明できた。

次に例として二つの積関手から双積関手を定義する。

C の任意の対象 A,B に対する積関手 (A × −) : C → C と (− × B) : C → C から双関手 (− × −) :

C×C→ Cを構成する。まず
(A×−)(B) = (−×B)(A)

と、任意の射 f : A → A′、g : B → B′ において

(A′ ×−)g ◦ (−×B)f = (−×B′)f ◦ (A×−)g

が成り立つから、確かに双積関手を構成するための条件は満たしている。

ここで双積関手 (−×−) : C×C→ Cの対象関数を積圏の任意の対象 [A,B]に対して

(−×−) : Obj(C×C) → Obj(C)

(−×−)([A,B]) = (A×−)(B) = (−×B)(A)

とする。同様に射関数を積圏の任意の射 [f, g] : [A,B] → [A,B]に対して

(−×−) : C×C([A,B], [A′, B′]) → C(A×B,A′ ×B′)

(−×−)([f, g]) = (A′ ×−)g ◦ (−×B)f = (−×B′)f = (A×−)g

とする。

すると二つの関手による双関手の定義から、このように定義した双積関手は恒等射と射の合成を保つ。よっ

て実際に関手になる。
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また対象関数と射関数は

(−×−)([A,B]) = (A×−)(B) (対象関数の定義)

= A×B (積関手の対象関数の定義)

(−×−)([f, g]) = (A′ ×−)g ◦ (−×B)f 射関数の定義

= (idA′ × g) ◦ (f × idB) (積関手の射関数の定義)

= f × g (積と合成の交換)

となるから、今定義した双積関手と元の対応から直接定義した双積関手は等しいことが分かる。

7 自然変換

関手をいくつかの対象や射の添字付けと見なし、これによって対象や射を量化し同時に扱うことができるよ

うになった。次は関手によって量化された対象や射の性質を同時に述べることができるようになる自然変換を

扱う。

定義 7.0.1 二つの関手 F,G : C→ Dの間の自然変換 α : F ⇒ G : C→ Dは以下で定義される成分と呼ば

れる射で構成される。

成分 圏 Cの任意の対象 X に対する自然変換 αの成分 αX とは

αX : FX → GX

となるような射である。つまりこの成分をすべての対象の分だけ集めたものが自然変換である。

自然性 自然変換とその成分は以下の自然性を満たさなければならない。

圏Cの任意の射 f : A → Bを関手 F,Gで写した射 Ff : FA → FB、Gf : GA → GBに対して、

Gf ◦ αA = αB ◦ Ff

が成り立つことを自然性と呼ぶ。

A B

FA FB

GA GB

C D

f

Ff

Gf

αA αB

F

G

α

つまり自然変換は関手 F,Gで写された対象同士に成分で橋を架け、自然性を用いて橋と橋の間に

肉付けを行うイメージである。自然性の存在意義については現段階で説明できないため気にしなく

ても良い。
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これによって関手 F と対象 Aによって添字付けられた対象 FAと、関手 Gと対象 Aによって添

字付けられた対象 GAの間の射 αA : FA → GAを、自然変換 α : F ⇒ Gと対象 Aによって添字

付けられた射であると考えることができる。

関手による射の添字付けは f = F (i)のようにまた別の射 iによって行われるが、自然変換による

添字付けは f = αA のように、対象 Aが添字になる。応用を考える上ではこの二つを区別してほ

しい。

次に具体的な自然変換の例を紹介する。

圏 C,Dを以下の対象、射で構成される。また l ◦ k = j ◦ iとする。

A

B

Cf
g

g ◦ f X

Y

W

Z

i

j

j ◦ i
l

k

k ◦ h
h

C D

関手 S, T : C→ Dを以下の対象と射の対応によって定義される関手とする。

SA

SB

SC

X

X

W=
h

k

k ◦ h
Sf

Sg

S(g ◦ f)

D

TA

TB

TC

X

Y

Z=
i

j

j ◦ i
Tf

Tg

T (g ◦ f)

D

関手 S, T の間の自然変換 α : S ⇒ T : C→ Dを以下の成分で定義する。

αA : SA → TA = h : X → X

αB : SB → TB = i : X → Y

αC : SC → TC = l : W → Z
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SA SB SC

TA TB TC

=

Sf Sg

Tf Tg

αA αB αC

X X W

X Y Z

h k

i j

h i l

すると、

αB ◦ Sf = i ◦ h
= Tf ◦ αA

αC ◦ Sg = l ◦ k
= j ◦ i
= Tg ◦ αB

となり、このような成分の定義は自然性を満たす。よって確かに αは自然変換となる。

定義 7.0.2（自然変換の同一性） 二つの自然変換 α, β : F ⇒ G : C→ Dが等しいとは、圏Cの任意の対象

X に対して αX = βX となるときである。

自然変換を対象による射の量化と捉えるならば、次に紹介する定関手の有用性がすぐに分かる。

定義 7.0.3（定関手） 圏Dの任意の対象 D に対する定関手∆D : C→ Dを次のように定義する。

対象関数 対象関数
∆D : Obj(C) → Obj(D)

を定写像∆D : Obj(C) → Obj(D)とする。すなわち圏Cの任意の対象 C に対して∆D(C) = D

である。

射関数 射関数は
∆D : C(A,B) → D(∆D(A),∆D(B))

であるが、対象関数の定義より、

∆D : C(A,B) → D(D,D)

と表せる。これを定写像 ∆idA : C(A,B) → D(D,D)で定義する。

すなわち、任意の射 f : A → B に対して ∆D(f) = idD となる。

恒等射の保存 射関数の定義より、任意の恒等射 idC に対して ∆D(idC) = idD = id∆D(C) であり成

り立つ。

射の合成の保存 同様に任意の合成可能な射 f, g に対して、

∆D(g ◦ f) = idD = idD ◦ idD = ∆D(g) ◦∆D(f)

であり成り立つ。
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C D
∆D

A

B

D

D

f idD

次にある関手 F : C → Dから ∆D : C → Dへの自然変換 α : F ⇒ ∆D を考えると、対象 Aに対する成分

は αA : FA → ∆D(A)であるから αA : FA → D となり、射の始域のみを対象で量化することができること

が分かる。また名前やその構成から分かるように、定関手は定写像の関手版である。

A B

FA FB

∆D(A) ∆D(B)

FA FB

D

=

C D

f

Ff

αA αB

idD

Ff

∆D(f)

αA αB

F

∆D

α

ある圏 Cの任意の対象 X の恒等射 idX : X → X はすべての対象に存在するため、対象 X によって添字

付けられた自然変換の成分 idとみなせるかもしれない。実際に圏 Cの二つの恒等関手 IdC : C→ Cの間の

自然変換
id : IdC ⇒ IdC : C→ C

を考えると、対象 X に対する成分は id : Id(X) → Id(X) = id : X → X となる。また任意の射 f : A → B

において
idB ◦ f = f ◦ idA

が成り立つから、確かに自然性を満たす。

A B

Id(A) Id(B)

Id(A) Id(B)

=

C D

f

Id(f)

Id(f)

idA idB

A B

A B

idA idB

f

f

IdC

IdC

id

次に自然変換 id : IdC ⇒ IdC : C→ Cを恒等関手 IdC : C→ Cだけでなく、任意の関手 F : C→ Dで考

えられるように一般化する。
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定義 7.0.4（恒等自然変換） 関手 F : C → Dに対して恒等自然変換 IDF : F ⇒ F : C → Dを、圏 C の

任意の対象 X において
(IDF )X = idFX

と定義する。

これは
(IDF )B ◦ Ff = Ff ◦ (IDF )A

より自然性を満たす。

A B

FA FB

FA FB

C D

f

Ff

Ff

(IDF )A (IDF )B

F

F

IDF

自然変換は対象によって添字付けられた射の集合であったから、自然変換もまた一種の射のように振る舞

う。次は自然変換の合成を、個々の成分の合成によって定義しようと思う。また後にこれがある圏における射

の合成であることが分かるが、自然変換にはまた別の合成を考えることができるため、区別のため ◦ではなく
·と表記する。

定義 7.0.5（自然変換の垂直合成） 任意の関手 F,G,H : C → D の間の任意の自然変換 α : F ⇒ G、

β : G ⇒ H の合成自然変換 β · α : F ⇒ H を、圏 Cの任意の対象 X における成分

(β · α)X = βX ◦ αX : FX → HX

によって定義する。

A B

FA FB

GA GB

HA HB

C D

f

Ff

Gf

Hf

αA αB

βA βB

F

G

H

α

β

A B

FA FB

HA HB

C D

f

Ff

Hf

βA ◦ αA βB ◦ αB

F

H

α · β
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すると任意の射 f : A → B において

(β · α)B ◦ Ff = βB ◦ αB ◦ Ff (合成自然変換の成分)

= βB ◦Gf ◦ αA (αの自然性)

= Hf ◦ βA ◦ αA (β の自然性)

= Hf ◦ (β · α)A (合成自然変換の成分)

となり、β · αは確かに自然性を満たす。

自然変換によって量化された対象や射の性質を同時に述べることができると書いたが、実際に積関手と射影

関手の間の自然変換を考えることによって、個々の積対象の持つ射影射の性質の一部を述べようと思う。

命題 7.0.6（射影射の自然性） 積を持つ圏Cの任意の積 A×B の射影射 πL,⟨A,B⟩ : A×B → Aは、双積関

手 (−×−) : C×C→ Cから射影関手 ΠL,⟨C,C⟩ : C×C→ Cへの自然変換の成分である。

この自然変換を
πL : (−×−) ⇒ ΠL⟨C,C⟩

とし、成分を
(πL)A×B = πLA : A×B → A

とする。すると、射の積の定義 f × g = ⟨f ◦ πLA, g ◦ πRB⟩より、

(πL)A′×B′ ◦ (f × g) = πLA ◦ (f × g) (成分の定義)

= πLA ◦ ⟨f ◦ πLA, g ◦ πRB⟩ (射の積の定義)

= f ◦ πLA (射の対の可換性)

= f ◦ (πL)A×B (成分の定義)

となり、確かに自然性を満たす。

[A,B] [A′, B′]
[f, g]

A×B A′ ×B′

A A′

f × g

f

(πL)A×B (πL)A′×B′

C×C C

(−×−)

ΠLC

πL

関手の射集合を厳密に表記すると FA,B : C(A,B) → D(FA,FB)のように添字がつくが、これも少し複雑

ではあるが実際に自然変換になる。

命題 7.0.7（関手の射関数の自然性） ある関手 F : C→ D圏 Cの任意の二対象 A,B に対して

FA,B : C(A,B) → D(FA,FB)

となる射関数は
F : C(−,−) ⇒ D(F−, F−) : Cop ×C→ Set
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となるような自然変換である。

また関手D(F−, F−)は
D(F−, F−) = D(−,−) ◦ (F op × F )

と定義される。具体的な対応は下の図式で確認してほしい。

[A,B] [A′, B′]

C(A,B) C(A′, B′)

D(FA,FB) D(FA′, FB′)

[f, g]

C(f, g)

D(Ff, Fg)

FA,B FA′,B′

C×Cop Set

C(−,−)

D(F−, F−)

F

証明 7.0.8 射関数の定義より、FA,B のような射は任意の対象に対して存在する。そのため自然変換 F の成

分とみなすことができる。自然性は上の図式が可換、つまり

FA′,B′ ◦C(f, g) = D(Ff, Fg) ◦ FA,B

を示せば良い。この図式は Set上にあるため、元の対応関係から射の等式を導く。圏Cの任意の射 f : A → B

に対して

FA′,B′ ◦C(f, g)(h) = FA′,B′(g ◦ h ◦ f) (射写像の定義)

= Fg ◦ Fh ◦ Ff (関手の射の合成の保存)

= D(Ff, Fg)(Fh) (射写像の定義)

= D(Ff, Fg) ◦ FA,B(h) (表記揺れ)

FA′,B′ ◦C(f, g)(h) = D(Ff, Fg) ◦ FA,B(h)より自然性が成り立つから、確かに射関数の全体は自然変換と

なる。

この証明では関手 F は関手D(F−, F−)の定義と自然変換と見なした射関数の二つに現れている。そのため、

関手 F が純粋に自然変換から構成できる主張することはできないが、関手 C(−,−)と関手D(F−, F−)の間

の射関数となるような自然変換はただ一つである。これは射関数 FA,A の恒等射の保存から示すことができる

ので、余力があれば証明してみてほしい。

命題 7.0.9（評価射の自然性） 評価射 evA,B : Set(B,A)×B → Aは Aに対して自然である。

証明 7.0.10 成分 evA,B によって構成される自然変換を evB : Set(B,−)×B ⇒ IdSet とする。

また、Set(B,−)×B は積関手 (−)×B と、Hom関手 Set(B,−)の合成関手 ((−)×B) ◦ Set(B,−)とす

る。すなわち、

Set(B,−)×B(A) = ((−)×B) ◦ Set(B,−)(A)

= ((−)×B)(Set(B,A))

= Set(B,A)×B
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となる。

このような評価射が任意の対象に対して存在することは明らかであるから、あとは自然性を証明すればよい。

任意の射 g : A → A′ に対して g ◦ evA,B = evA′,B ◦ (Set(B, g)× idB)を示す。任意の射 f : B → Aと B の

任意の元 bの対 ⟨f, b⟩に対して、

g ◦ evA,B(⟨f, b⟩) = g(f(b)) (評価射の定義)

= (g ◦ f)(b) (写像の合成の定義)

= evA′,B(⟨g ◦ f, b⟩) (評価射の定義)

= evA′,B((Set(B, g)× idB)(⟨f, b⟩)) (射の積の定義)

= evA′,B ◦ (Set(B, g)× idB)(⟨f, b⟩)

このように写像の合成の定義の等式によって自然性を満たす。よって評価射が自然変換の成分であることが分

かった。

A A′

Set(B,A)×B Set(B,A′)×B

A A′

g

Set(B, g)× idB

g

evA,B evA′,B

Set Set

Set(B,−)×B

IdSet

evB

命題 7.0.11（余評価射の自然性） 余評価射 ceA,B : A → Set(B,A×B)は Aに対して自然である。

証明 7.0.12 評価射と同様に示す。

Set(B,− × B) = Set(B,−) ◦ (− × B) とすると、Set(B,− × B)(A) = Set(B,A × B) である。これに

より成分 ceA,B によって構成される自然変換を ceB : IdSet → Set(B,− × B) とする。同様に任意の射

f : A → A′ に対して Set(B, f × idB) ◦ ceA,B = ceA′,B ◦ f が成り立つことを示す。対象 Aの任意の元を a

とすると、

Set(B, f × idB) ◦ ceA,B(a) = Set(B, f × idB)(λx.⟨a, x⟩) (余評価射の定義)

= (f × idB) ◦ (λx.⟨a, x⟩) (Hom関手の定義)

= λx.(f × idB)(⟨a, x⟩) (表記変更)

= λx.⟨f(a), x⟩ (射の積の定義)

(ceA′,B ◦ f)(a) = ceA′,B(f(a)) (写像の合成の定義)

= λx.⟨f(a), x⟩ (余評価射の定義)

Set(B, f × idB)◦ ceA,B(a) = λx.⟨f(a), x⟩と (ceA′,B ◦f)(a) = λx.⟨f(a), x⟩が示せたわけだが、λx.⟨f(a), x⟩
は表記が一致しただけあって直ちに Set(B, f × idB) ◦ ceA,B = ceA′,B ◦ f が示せるわけでは無いが、定義を
考えると明らかに等しい。よって余評価射は自然変換の成分である。
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A A′

A A′

Set(B,A×B) Set(B,A′ ×B)

f

f

Set(B, f × idB)

evA,B evA′,B

Set Set

IdSet

Set(B,−×B)

evB

evA,B と ceA,B が Aに対して自然であることを述べたが、このような射は任意の B に対しても定義できる。

しかし B は関手の始域、終域の片方のみに二つの同じ対象が現れている。同じ対象というのは例えば評価射

の場合、evA,B : Set(B,A)× B′ → Aとなるような評価射は構成できない。このような制約を関手で行うこ

ともできるが、一般的にはこのような自然性も許容した超自然変換と呼ばれる自然変換の一般化によって定義

され、自然変換と同様の性質を持つ。

7.1 関手圏

自然変換には恒等射によって定義される恒等自然変換と、射の合成によって定義される垂直変換を考えるこ

とができた。これまで様々な圏を考えてきたように、これらの自然変換を用いれば実際に圏を考えることがで

きるようになる。

定義 7.1.1（関手圏） 二つの圏 C,Dに対する関手圏DC を以下の要素で定義する。

対象 Obj(DC) を C から D への関手の全体とする。すなわち、Cat における射集合によって

Obj(DC) = Cat(C,D)と表せる。

射 任意の関手 F,G : C→ Dに対して、射集合DC(F,G)を関手 F,Gの間の自然変換全体の集合と

する。

射の合成 任意の関手 F,G,H : C→ Dの間の任意の自然変換 α : F ⇒ G、β : G ⇒ H を合成した自

然変換を、自然変換の垂直合成によって β · αと定義する。

恒等射の存在 任意の関手 F : C→ Dに対して、恒等射となる自然変換を恒等自然変換によって IDF

と定義する。

結合律 任意の関手 F,G,H, I : C→ Dと自然変換 α : F ⇒ G、β : G ⇒ H、γ : H ⇒ I に対して、

(γ · β) · α = γ · (β · α)

が成り立てば良い。自然変換の成分はただの射であるから圏Dの結合律より、圏 Cの任意の対象

X に対して
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((γ · β) · α)X = (γX ◦ βX) ◦ αX (自然変換の垂直合成の定義)

= γX ◦ (βX ◦ αX) (圏Dの結合律)

= (γ · (β · α))X (自然変換の垂直合成の定義)

が成り立つ。よって二つの自然変換のすべての成分が一致するから (γ · β) · α = γ · (β · α)であり、
結合律が成り立つ。

単位元律 任意の関手 G : C → Dに対応する恒等自然変換 IDG と、任意の関手 F,H : C → D、任

意の自然変換 α : F ⇒ G、β : G ⇒ H に対して、

IDG · α = α, β · IDG = β

が成り立つことを示せば良い。結合律と同様に成分を考える。恒等自然変換の成分は恒等射である

から、圏 Cの任意の対象 X に対して

(IDG · α)X = (IDG)X ◦ αX (自然変換の垂直合成の定義)

= idGX ◦ αX 恒等自然変換の定義

= αX 圏Dの単位元律

β に対しても同様に示せる。よって IDG · α = α, β · IDG = β であり、単位元律が成り立つ。

まだ圏論的な操作からは関手圏を定義することはできないが、関手圏の対象の集合や射集合が定義できること

は関手、自然変換が写像、射集合を用いて定義されていることから簡単に分かる。

関手圏が圏であるということは、関手圏は Catの対象である。つまりある圏からある関手圏への関手を考

えることができるようになる。その一例として定写像から対角写像を得たように、定関手を得る操作を関手と

見なした対角関手を見ていこう。

定義 7.1.2（対角関手） 圏 CからDへの定関手を与える対角関手∆ : D→ DC を以下のように定義する。

対象関数 対象関数
∆ : Obj(D) → Obj(DC)

を圏 Dの任意の対象 D と定関手 ∆D : C → Dに対して定関数 ∆(D) = ∆D と定義する。また

ここでの ∆D は射関数ではなく

射関数 射関数は
∆ : C(A,B) → D

C(∆A,∆B)

となるように、Aから B への射を、Aの定関手から B の定関手への自然変換に写す写像になる。

またこの自然変換を射 f に対する定自然変換と呼ぶことにする。

まずは任意の射 f : A → B に対する定自然変換∆f : ∆A ⇒ ∆B を先に定義する。圏Cの任意の

対象 C に対する ∆f の成分は
(∆f)C : ∆A(C) → ∆B(C)
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となるが、定関手の定義より、
(∆f)C : A → B

と表せる。つまり、二つの定関手によって定自然変換の始域と終域がそれぞれ A,B に集約されて

いるため成分を (∆f)C = f と定義できる。

自然性については、

(∆f)C′ ◦∆A(g) = f ◦ idA = idB ◦ f = ∆B(g) ◦ (∆f)C

と成り立ち、∆f が自然変換であることが分かった。

C C ′

∆A(C) ∆A(C ′)

∆B(C) ∆B(C ′)

A A

B B

=

C D

g

idA

f f

idB

∆A(g)

∆B(g)

(∆f)C (∆f)′C

∆A

∆B

∆f

これによって、対角関手の射関数∆ : C(A,B) → DC(∆A,∆B)を ∆(f) = ∆f と定義する。

恒等射の保存 圏 Dの任意の対象 D に対して ∆(idD) = ID∆D を示せば良い。また対角関手の終域

は関手圏であるため、関手圏の恒等射である恒等自然変換に対応する。圏 Cの任意の対象 C の成

分を見ると、

(∆(idD))C = idD (射関数の定義)

(ID∆D)C = id∆D(C) (恒等自然変換の定義)

= idD (定関手の定義)

よって任意の成分について
(∆(idD))C = idD = (ID∆D)C

が成り立つから ∆(idD) = ID∆D となり、恒等射を保存する。

射の合成の保存 圏Dの合成可能な二射 f, gに対して、∆(g ◦ f) = ∆g ◦∆f が成り立てばよい。同様

に圏 Cの任意の対象 C に対する成分を見ると、

(∆(g ◦ f))C = g ◦ f (射関数の定義)

(∆g ·∆f)C = (∆g)C ◦ (∆f)C (自然変換の垂直合成の定義)

= g ◦ f (射関数の定義)

よって任意の成分について

(∆(g ◦ f))C = g ◦ f = (∆g)C ◦ (∆f)C
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が成り立つから ∆(g ◦ f) = ∆g ◦∆f となり、射の合成を保存する。

圏から関手圏への関手が違和感なく定義される事が分かったと思う。次は更に踏み込んで圏と関手圏の間の

同型を示す。

また圏の同型についても軽く触れておこう。

定義 7.1.3（圏同型） Cat において、圏 C,D が関手 I : C → D, I−1 : D → C によって同型、つまり

I ◦ I−1 = IdD, I−1 ◦ I = IdC である時、圏同型と呼ぶことにする。またこの時関手 I, I−1 を同型関手と呼

ぶことにする。

一般の圏と同様に元の対応を見てみよう。同型の元の関係より、C : 1 → C は C の対象と同一視できるの

だった。すなわちある対象 D が存在して C ∼ D となる。

1

C

D

C

D

I I−1

関手の定義に乗っ取ると、関手 I ◦ I−1 の対象関数は合成関手の定義より、それぞれの対象関数

I : Obj(C) → Obj(D), I−1 : Obj(D) → Obj(C)

の合成
I ◦ I−1 : Obj(D) → Obj(D)

が対象関数になる。I ◦ I−1 = IdD であるから、対象関数においても I ◦ I−1 = idObj(D) が成り立つ。同様に

I−1 ◦ I = idObj(C) も成り立つから、I, I−1 の対象関数も Set上の同型射となる。

次に圏の射の対応関係を見ていこう。関手の定義に従って考えると、関手 I ◦ I−1 の射関数は、合成関手の

定義よりそれぞれの射関数 I : C(A,B) → D(IA, IB)、I−1 : D(A,B) → C(I−1A, I−1B)の合成射

I ◦ I−1 : D(A,B) → D(A,B)

が射関数となる。対象関数と同様にこれも同型射になるから、射 f : C → C ′ に対して Ff = g, C ∼ D,C ′ ∼
D′ とすると同型 C(C,C ′) ∼= D(D,D′)によって f ∼ g と表記できる。

1

C(C,C ′)

D(D,D′)

f

g

I I−1

命題 7.1.4（圏の元） 一点離散圏 1、任意の圏 Cに対して C ∼= C1

証明 7.1.5 集合の圏における同型 A ∼= Set(1, A)と同様の手法で証明する。すなわち、対角関手 ∆ : C →
C1 が同型射となる関手であることを示す。
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また定写像と同様に C1 の対象である任意の関手は明らかに定関手である。なぜなら一点離散圏 1はただ一

つの対象と射のみを持ち、それらは必ず圏 Cのただ一つの対象とその恒等射に写されるため、定関手の定義

を満たす。

関手∆−1 : C1 → Cを

対象関数 対象関数
∆−1 : Obj(C1) → Obj(C)

を圏 1C の任意の対象 ∆Aに対して ∆−1(∆A) = ∆A(∗) = Aと定義する。

この対象関数の全域性は先ほど示した 1C の性質によるものである。

射関数 射関数
∆−1 : C1(∆A,∆B) → C(A,B)

を任意の定自然変換 ∆f : ∆A ⇒ ∆B に対して ∆−1(∆f) = (∆f)∗ = f と定義する。

恒等射の保存 任意の対象 Aに対して ∆−1(ID∆A
) = id∆−1(∆A) を示せばよい。これは対角関手の恒

等射の保存から簡単に示せる。

∆−1(ID∆A) = ∆−1(∆idA) (対角関手の恒等射の保存)

= idA (射関数の定義)

= id∆−1(∆A) (対象関数の定義)

よって成り立つ。

射の合成の保存 任意の合成可能な二射 f, gに対して、∆−1(∆g ·∆f) = ∆−1(∆g) ◦∆−1(∆f)が成り

立つことを示せばよい。同様に対角関手の射の合成の保存から簡単に示せる。

∆−1(∆g ·∆f) = ∆−1(∆(g ◦ f)) (対角関手の射の合成の保存)

= g ◦ f (射関数の定義)

= ∆−1(∆g) ◦∆−1(∆f) (射関数の定義)

対象関数 ∆, ∆−1 において、圏 Cの任意の対象 Aに対して

A = ∆−1(∆A)

= (∆−1 ◦∆)(A)

であるから、∆−1 ◦∆ = idObj(C)が成り立つ。

圏 1C の任意の対象 F を考えるが、1C の任意の対象は定関手であるため、任意の定関手 ∆Aを考えればよ

い。よって

F = ∆A

= ∆((∆−1 ◦∆)(A))

= (∆ ◦∆−1)(∆A)

= (∆ ◦∆−1)(F )
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よって、∆ ◦∆−1 = idObj(C
1)が成り立つ。

同様の議論が射関数でも成り立つから、射関数、対象関数の等式により ∆−1 ◦∆ = IdC, ∆ ◦∆−1 = IdC1 と

なり、C ∼= C1 が成り立つ。

圏 Cの対象は関手 ∆A : 1→ Cで表現でき、射は自然変換 ∆f : ∆A ⇒ ∆B で表現できることになるが、こ

れによって圏の対象や射といった内部の構造に言及せずとも圏に関する議論を行うことができるようになっ

た。

また以降の議論で紛らわしくない場合、C1 の対象∆Aを A、射∆f を f と表記することにする。

7.2 自然同型

次に自然変換や関手を用いた量化された同型である自然同型を見ていく。

定義 7.2.1（自然同型 (関手の同型)） 関手圏 DC の対象 F,G の同型 F ∼= G を自然同型と呼ぶ。また同型

射となる自然変換を同型自然変換と呼ぶことにする。

命題 7.2.2（自然同型と対象の同型） 関手 F,G : C→ Dが自然同型 ⇐⇒ 圏 Cの任意の対象 Aにおいて、

ある同型射 iA : FA → GAが存在し、Cの任意の射 f : A → B に対して

iB ◦ Ff = Gf ◦ iA

が成り立つ。

自明に思えるが念の為証明しておく。

証明 7.2.3（=⇒） 同型の定義により、ある自然変換 i : F ⇒ G、i−1 : G ⇒ F が存在し、

i · i−1 = IDG, i−1 · i = IDF

が成り立つ。この二つの自然変換の等式を成分に分解すると、任意の対象 Aに対して

iA ◦ i−1
A = idGA, i−1

A ◦ iA = idFA

が成り立つ。よって任意の対象 Aに対して同型射 iA が存在することが分かった。また iB ◦ Ff = Gf ◦ iA は
自然変換 iの自然性より明らかに成り立つ。

証明 7.2.4（⇐=） 圏 C の任意の対象 A に対して射 iA : FA → GA が存在し、自然性として iB ◦ Ff =

Gf ◦ iA を満たすから iは自然変換 i : F ⇒ Gである。また同型射の逆射 i−1
A も存在する。自然性について

は、等式の両辺にそれぞれ逆射を合成して、

iB ◦ Ff = Gf ◦ iA
i−1
B ◦ (iB ◦ Ff) ◦ iA = i−1

B ◦ (Gf ◦ iA) ◦ iA (射の合成の写像性)

(i−1
B ◦ iB) ◦ Ff ◦ iA = i−1

B ◦Gf ◦ (iA ◦ iA) (結合則)

Ff ◦ iA = i−1
B ◦Gf (同型射の定義)

となり、逆射も自然性を持ち、自然変換とみなせる。また、任意の対象 Aに対して

iA ◦ i−1
A = idGA, i−1

A ◦ iA = idFA
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が成り立つから、
i · i−1 = IDG, i−1 · i = IDF

が成り立ち、F,Gは自然同型となる。

自然同型を後者で捉える場合、FA ∼= GAが Aに対して自然であると述べることがある。

複数の対象において成り立つような同型を一組の自然変換の同型で表現することができるため、これは同型

という性質の量化と言える。対象の同型を考えるだけならば自然性を仮定する必要は無いが、自然性を満たす

のであれば射集合も同型となり、Ff ∼ Gf が成り立つ。そして実はこの対応もまた自然同型になる。

命題 7.2.5（自然同型と射集合の対応） 関手 F,G : C → D に対して、F ∼= G =⇒ C(F−, F−) ∼=
C(G−, G−)

言い換えると、圏 Dにおいて FA ∼= GAが任意の Aに対して自然である時、Setにおいて D(FA,FB) ∼=
D(GA,GB)

証明 7.2.6 F,Gの同型射となる自然変換をそれぞれ i : F ⇒ G, i−1 : G ⇒ F とする。射集合の同型射をそ

れぞれ
D(i−1

A , iB) : D(FA,FB) → D(GA,GB), D(iA, i
−1
B ) : D(GA,GB) → D(FA,FB)

とすると、双射写像の合成より

D(i−1
A , iB) ◦D(iA, i

−1
B ) = D(iA ◦ i−1

A , iB ◦ i−1
B ) = D(idGA, idGB) = idD(GA,GB)

となる。同様に D(iA, i
−1
B ) ◦ D(i−1

A , iB) = idD(FA,FB) も示せるから、任意の対象 A,B において

D(FA,FB) ∼= D(GA,GB)である。

C

A B

D

FA FB

GA GB

Set

D(FA,FB)

D(GA,GB)

f

Ff

Gf

iA iBi−1
A i−1

B D(i−1
A , iB)D(iA, i

−1
B )

次にD(FA,FB) ∼= D(GA,GB)の A,B に対する自然性を証明する。

すなわち、以下の図式が任意の射 g : A′ → A, h : B → B′ において可換になれば良い。

D(FA,FB) D(GA,GB)

D(FA′, FB′) D(GA′, GB′)

D(i−1
A , iB)

D(i−1
A′ , iB′)

D(Fg, Fh) D(Gg,Gh)

自然性の等式としては
D(Gg,Gh) ◦D(i−1

A , iB) = D(i−1
A′ , iB′) ◦D(Fg, Fh)
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のように書くことができ、射写像を合成して

D(i−1
A ◦Gg,Gh ◦ iB) = D(Fg ◦ i−1

A′ , iB′ ◦ Fh)

が得られる。つまり二等式
i−1
A ◦Gg = Fg ◦ i−1

A′ , Gh ◦ iB = iB′ ◦ Fh

を示せばよい。しかしこれは自然変換 i : F ⇒ G, i−1 : G ⇒ F の自然性そのものであり成り立つ。よってが

D(FA,FB) ∼= D(GA,GB)の A,B に対して自然であることを示せた。

心当たりがあるかもしれないが、今まで扱ってきた複数の対象において成り立つような同型のほとんどが自然

同型である。次はこれらを例として確かめていく。

命題 7.2.7（A× 1 ∼= Aの自然性） A× 1 ∼= Aは Aにおいて自然である。

証明 7.2.8 A× 1 ∼= Aの同型射はそれぞれ πL,A×1 : A× 1 → A、⟨idA, !A⟩ : A → A× 1であった。自然変

換の始域と終域はそれぞれ恒等関手と積関手で表せそうである。

実際に関手 IdC : C → Cと (−)× 1 : C → Cの間の自然変換 πL : (−)× 1 ⇒ IdC は任意の対象 Aに対

して (πL)A = πL,A×1 = πA と定義できる。自然同型の定義より、自然性を示すのは片方の自然変換だけで良

いから、この πL が自然性を満たすことを確かめる。

(πL)B ◦ ((−)× 1)(f) = πB ◦ (f × id1) (自然変換と関手の定義)

= πB ◦ ⟨f ◦ πA, id1 ◦ π1⟩ (射の積の定義)

= f ◦ πA (積の普遍性)

= Id(f) ◦ (πL)A (自然変換と関手の定義)

よって πL は自然変換であり、A× 1 ∼= Aは自然同型である。

A B

A× 1 B × 1

A B

C C

f

f × id1

f

πA πB

(−)× 1

IdC

πL

命題 7.2.9（C(X,B) ∼= C(X,B′)の自然性） B ∼= B′ =⇒ C(X,B) ∼= C(X,B′)かつ X に対して自然。

証明 7.2.10（=⇒） B ∼= B′ =⇒ C(X,B) ∼= C(X,B′) はすでに示してあるので、同型射 C(X, i) :

C(X,B) → Set(X,B′)が X に対して自然であることを示せば良い。

任意の射 g : Y → X に対して、C(g,B′) ◦C(X, i) = C(Y, i) ◦C(g,B)が成り立つことを示せばよいが、双

Hom関手の定義より
C(g, i) = C(g,B′) ◦C(X, i) = C(Y, i) ◦C(g,B)

が成り立つから明らかに自然である。
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X Y

C(X,B)

C(X,B′)

C(Y,B)

C(Y,B′)

C D

i
C(X, i) C(Y, i)

C(g,B)

C(g,B′)

C(−, B)

C(−, B′)

C(−, i)

この自然性が述べていることは、f : X → B と対応する射 f ′ : X → B′、すなわち f ′ = i ◦ f, f = i−1 ◦ f ′ と

なる二射に対して、ある射 g : Y → X を両方に合成しても f ◦ g と f ′ ◦ g がまた対応することを示している。
実際に計算すれば自明なことではあるが、射の前からの合成は射 f, f ′ の対応関係を保つということが言える。

証明 7.2.11（⇐=） 現在自然変換 α : C(−, B) ⇒ C(−, B′)とその逆射 α−1 : C(−, B′) ⇒ C(−, B)が与え

られている。

この二つの自然変換から B と B′ の間の同型射を構成しなければ行けないが、α, α−1 の成分は射写像とは限

らない。そのため少し工夫が必要になる。

証明の方向性を示す。上の証明によると、C(X, i) : C(X,B) → C(X,B′)が自然変換のX 成分だった。この

射から元の同型射である iを導出したい。ここでこの自然変換の B 成分C(B, i) : C(B,B) → C(B,B′)に恒

等射 idB : B → B を適用すると、射写像の定義より、C(B, i)(idB) = iが成り立つ。

これによって自然変換 α, α−1 から元の同型射を取り出せば良い。

i = αB(idB), i−1 = α−1
B′ (idB)とし、i, i−1 が同型射になることを示す。α, α−1 の自然性より、

C(i−1, B′) ◦ αB = αB′ ◦C(i−1, B)

が成り立つ。両辺に恒等射 idB を適用して、

(C(i−1, B′) ◦ αB)idB = C(i−1, B′)(i) (iの定義)

= i ◦ i−1 (射写像の定義)

(αB′ ◦C(i−1, B))idB = αB′(i−1) (射写像の定義)

= αB′(α−1
B′ (idB)) (i−1 の定義)

= (αB′ ◦ αB)(idB) (写像の合成の定義)

= idB′

よって i ◦ i−1 = idB′ が示せた。同様に i−1 ◦ i = idB も成り立つため、B ∼= B′ が示せた。

この証明のように、射集合が関わる自然変換の議論において恒等射が取れるように成分を指定する、というテ

クニックはよく使われている。この証明の核である C(B, i)(idB) = iのより形式的な証明は、以前示した余

評価射による恒等射の定義が用いられるので、興味があれば豊穣圏における弱米田の補題の証明あたりを読ん

でほしい。

命題 7.2.12（C(X,A×B) ∼= C(X,A)×C(X,B)の自然性）

A×B が A,B における積対象 ⇐⇒ C(X,A×B) ∼= C(X,A)×C(X,B)が X に対して自然
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命題 7.2.13（C(X, 1) ∼= I の自然性）

1が終対象 ⇐⇒ C(X, 1) ∼= I が X に対して自然

7.3 関手の合成の関手化

射の合成は Setの射
◦ : C(B,C)×C(A,B) → C(A,C)

で表される。これは小さい圏の圏 Catでも当てはまり、

◦ : Cat(B,C)×Cat(A,B) → Cat(A,C)

となる。しかし現在では関手の集合である射集合よりも関手を対象に持つ関手圏が定義できている。そこで関

手の合成に現れる射集合を関手圏に置き換えることはできないだろうか。すなわち、

◦ : CB ×BA → C
A

となるような関手を考えたい。対象関数については単に関手の合成で表せるが、射関数をどのように構成する

かがこれからの議論の核となる。

定義 7.3.1（自然変換と関手の合成） 関手 F,G : C→ Dと自然変換 α : F ⇒ G、関手 F ′ : D→ Eに対し

て、自然変換 F ′ ◦ α : F ′F ⇒ F ′Gを Cの任意の対象 C に対して (F ′ ◦ α)C = F ′(αC)と定義する。

すなわち、圏Dの αの成分を関手 F の射関数で圏 Eに写す。そして得られた F (αC)を自然変換の成分とみ

なす、という流れである。さてこれが実際に自然変換となることを示そう。

まず F (αA)が圏 Cの任意の対象 C に対して存在することは、αA がそうであることと、関手 F ′ が任意の射

を何かしらの射へ写すことから分かる。よって後は自然性を示せば良い。だがこれは関手 F ′ の合成の保存と

αの自然性によって簡単に示せる。

F ′αB ◦ F ′Ff = F ′(αB ◦ Ff) = F ′(Gf ◦ αA) = F ′Gf ◦ F ′αA

よって確かに自然変換である。

A B

FA FB

GA GB

F ′FA F ′FB

F ′GA F ′GB

C D E

f

Ff

Gf

αA αB

F ′Ff

F ′Gf

F ′(αA) F ′(αB)

F ′
F

G

α
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A B

F ′FA F ′FB

F ′GA F ′GB

C E

f

F ′Ff

F ′Gf

(F ′ ◦ α)A (F ′ ◦ α)B

F ′F

F ′G

F ′ ◦ α

次に自然変換の後ろに関手を合成する操作を考えよう。

定義 7.3.2（関手と自然変換の合成） 関手 F ′, G′ : D→ Eと自然変換 β : F ′ ⇒ G′、関手 F : C→ Dに対

して自然変換 β ◦ F : F ′F ⇒ G′F を Cの任意の対象 C に対して (β ◦ F )C = βFC と定義する。これは自然

変換 β の量化の範囲を F で写された範囲に限定するという流れである。

ここでの βFC : F ′FC → G′FC は単に β の FC 成分であるから自然性はすでに満たす。圏 Cの任意の対象

C に対して成分 βFC が存在するかどうかであるが、関手 F は C を何らかの対象に写すため、βFC は存在す

る。よって βF は自然変換である。

A B FA FB

F ′FA F ′FB

G′FA G′FB

C D E

f Ff

F ′Ff

G′Ff

βFA βFB

F
F ′

G′

β

A B

F ′FA F ′FB

G′FA G′FB

C E

f

F ′Ff

G′Ff

(β ◦ F )A (β ◦ F )B

F ′F

G′F

β ◦ F

次にいよいよ合成を行う関手の射関数となるような操作を定義する。またこの合成は関手圏における射の合成

である垂直合成と区別するため水平合成と呼ぶことにする。
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定義 7.3.3（自然変換の水平合成） 関手 F,G : C→ D, F ′, G′ : D→ Eと自然変換 α : F ⇒ G, β : F ′ ⇒
G′ に対して垂直合成された自然変換 βα : F ′F ⇒ G′Gを

β ◦ α = αG′ · Fβ = Gβ · αF ′

とする。

EC

F ′F F ′G

G′F G′G

β ◦ F β ◦G

F ′ ◦ α

G′ ◦ β

成分を見ると、Cの任意の対象 C に対して成分

(β ◦ α)C = G′αC ◦ βFC = βGC ◦ F ′αC

となる。自然変換と関手の合成と関手の自然変換の合成をそれぞれ用いて定義されているが、これらが自然変

換であることはすでに示した。よってその二つを合成した β ◦ αも自然変換である。
さて自然変換の水平合成の直感を得るためにも αG′ · Fβ = Gβ · αF ′ を示そう。これは上に書いたように A

に対して成分の等式
G′αA ◦ βFA = βGA ◦ F ′αA

が成り立てば良い。

A

FA

GA

F ′FA G′FA

F ′GA G′GA

C D E

αA

βFA

βGA

F ′αA G′αA

F ′

G′

F

G

α β

ここで FA = B, GA = C,αA = f と置くと、これは明らかに β の自然性であり成り立つ。

B

C

F ′B G′B

F ′C G′C

D E

f

βB

βC

F ′f G′f
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また、αを恒等自然変換とすると関手と自然変換の合成になり、β を恒等自然変換とすると自然変換と関手の

合成になる。よってどちらも自然変換の水平合成と呼ぶことにする。

定義 7.3.4（関手を合成する関手） 関手を合成する関手 ◦ : ED ×DC → EC を以下のように定義する。

対象関数 対象関数
◦ : Obj(ED ×DC) → Obj(EC)

は、積圏の対象の集合の定義より、

◦ : Obj(ED)×Obj(DC) → Obj(EC)

と表せる。また関手圏の対象集合の定義より、

◦ : Cat(D,E)×Cat(C,D) → Cat(C,E)

とも表せるから、Catの定義に用いられる関手の合成を対象関数とする。

射関数 任意の関手 F,G : C→ D, F ′, G′ : D→ Eに対する射関数

◦ : ED ×DC(⟨F ′, F ⟩, ⟨G′, G⟩) → E
C(F ′ ◦ F,G′ ◦G)

を任意の自然変換 α : F ⇒ G, β : F ′ ⇒ G′ に対して

◦(β, α) = β ◦ α

と定義する。

ED ×DC
EC

⟨F ′, F ⟩

⟨G′, G⟩

⟨β, α⟩

F ′ ◦ F

G′ ◦G

β ◦ α

恒等射の保存 積圏の恒等射の定義より、⟨F ′, F ⟩ の恒等射は ⟨IDF ′ , IDF ⟩ : ⟨F ′, F ⟩ ⇒ ⟨F ′, F ⟩ であ
るから、IDF ′ ◦ IDF = IDF ′F を示せば良い。これは Cの任意の対象 C おいて

(IDF ′ ◦ IDF )C = F ′(IDF )C ◦ (IDF ′)FC (自然変換の水平合成)

= F ′(idFC) ◦ idF ′FC (恒等自然変換の定義)

= idF ′FC ◦ idF ′FC (関手の恒等射の保存)

= idF ′FC

となるから IDF ′ ◦ IDF = IDF ′F である。

射の合成の保存 任意の F,G,H : C → D, F ′, G′,H ′ : D → E と自然変換 α : F ⇒ G, β : F ′ ⇒
G′, α′ : G ⇒ H, β′ : G′ ⇒ H ′ に対して

(β′ · β) ◦ (α′ · α) = (β′ ◦ α′) · (β ◦ α)
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が成り立つことを示せば良い。

C D E

F ′

G′

H ′

F

G

H

α β

α′ β′

圏 Cの任意の対象 Aに対して、

((β′ · β) ◦ (α′ · α))A = H ′(α′ · α)A ◦ (β′ · β)FA (水平合成の定義)

= H ′α′
A ◦H ′αA ◦ β′

FA ◦ βFA (垂直合成の定義)

= H ′α′
A ◦ β′

GA ◦G′αA ◦ βFA (β の自然性)

= (β′ ◦ α′)A ◦ (β ◦ α)A (水平合成の定義)

= ((β′ ◦ α′) · (β ◦ α))A (垂直合成の定義)

ED ×DC
EC

⟨F ′, F ⟩

⟨G′, G⟩

⟨H ′,H⟩

⟨β, α⟩

⟨β′, α′⟩

F ′ ◦ F

G′ ◦G

H ′ ◦H

β ◦ α

β′ ◦ α′

(β′ · β) ◦ (α′ · α)

よって (β′ · β) ◦ (α′ · α) = (β′ ◦ α′) · (β ◦ α)である。またこの性質を相互交換法則と呼ぶことに
する。

関手の合成を関手として定義できたわけだが、これを Catにおける射の合成の代わりに使用できるかと考え

るが、それを行うには圏の定義から考え直さなくてはいけなくなる。現時点で触れる予定は無いが、興味があ

る場合は 2-Categoryに関する文献を読むと良い。

また関手の同型の保存より以下の命題がすぐに成り立つ。

命題 7.3.5（関手合成の同型の保存） 関手 F, F ′ : C→ D, G,G′ : D→ Eに対して F ∼= F ′, G ∼= G′ =⇒
G ◦ F ∼= G′ ◦ F ′

証明 7.3.6 双関手の同型の保存より

F ∼= F ′, G ∼= G′ =⇒ ⟨G,F ⟩ ∼= ⟨G′, F ′⟩
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また関手を合成する関手の同型の保存より、

⟨G,F ⟩ ∼= ⟨G′, F ′⟩ =⇒ G ◦ F ∼= G′ ◦ F ′

よって F ∼= F ′, G ∼= G′ =⇒ G ◦ F ∼= G′ ◦ F ′ が成り立つ。

さて、自然変換の水平合成や相互交換法則に触れた理由として、関手圏やその合成を行う関手の性質によっ

て、関手や自然変換の満たすべき性質を復元できるからである。特に関手の合成の保存や、自然性などは仮定

する動機が不十分であったから、これらを Catの持つ性質と見なして改めて導出しよう。

自然性と水平合成の関係を見る。一点離散圏 1と任意の圏 C,D、関手 A,B : 1→ C, F,G : C→ D、自

然変換 f : A ⇒ B, α : F ⇒ Gを考える。

∗

A∗

B∗

FA∗ GA∗

FB∗ GB∗

1 C D

f∗

αA∗

αB∗

Ff∗ Gf∗

A

B

F

G

αf

A = A(∗), B = B(∗), f = f∗ とすると、以下のような図式が書ける。

∗

A

B

FA GA

FB GB

1 C D

f

αA

αB

Ff Gf

A

B

F

G

αf

これは任意の射、任意の対象で成り立つから、明らかに自然変換の図式である。

関手の合成の保存と相互交換法則の関係性を見る。一点離散圏 1 と任意の圏 C,D、関手 A,B,C : 1 →
C, F : C→ D、自然変換 f : A ⇒ B, g : B ⇒ C を考えると、相互交換法則より

(IDF · IDF ) ◦ (g · f) = (IDF ◦ g) · (IDF ◦ f)
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が成り立つ。この自然変換の ∗成分を取ると、

((IDF · IDF ) ◦ (g · f))∗ = F (g · f)∗ ◦ (IDF · IDF )C∗ (水平合成の定義)

= F (g · f)∗ (恒等自然変換の定義)

((IDF ◦ g) · (IDF ◦ f))∗ = (IDF ◦ g)∗ ◦ (IDF ◦ f)∗ (垂直合成の定義)

= Fg∗ ◦ Ff∗ (水平合成の定義)

となり、f∗ = f, g∗ = g とすると、(g · f)∗ = g ◦ f であるから、この等式は F (g ◦ f) = Fg ◦ Ff と変形で

きる。

1 C D

F

F

F

A

B

C

f IDF

g IDF

7.4 圏同値

圏 C,Dの同型であるためには、２つの関手 F : C → D, G : D → Cが F ◦G = IdD, G ◦ F = IdC と

ならなければならない。ここで圏 C,Dのある対象 C,D を適用すると、FG(D) = D, GF (C) = C となる。

これまでの議論で気がついたかもしれないが、圏論には二つの対象が等しいことを示す手段がない。そのため

圏が同型であることを示すのは難しい。対象の等価性についてはこれまで同型を使用してきたから、これらの

等号を同型に一般化することを考えよう。

定義 7.4.1 圏 C,D に対してある二関手 F : C → D, G : D → Cが存在して F ◦G ∼= IdD, G ◦ F ∼= IdC

となるとき、C,Dは圏同値であるといい、C ≃ Dと表記する。また F,Gを同値関手と呼ぶことにする。

命題 7.4.2（圏同値の同値性） 圏同値 C ≃ Dは同値関係である。

証明 7.4.3

反射律 C ≃ Cを示せば良い。同値関手を IdC, IdC とすると、IdC ◦ IdC = IdC である。IdC ◦ IdC
と IdC が等しいから、同型の反射律より IdC ◦ IdC ∼= IdC が成り立つ。

対称律 定義の対称性より自明

推移律 C ≃ D, D ≃ E =⇒ C ≃ E を示せばよい。それぞれの同値関手を F : C → D, G : D →
C, F ′ : D→ E, G′ : E→ Dとする。この時、

GF ∼= IdC, FG ∼= IdD

G′F ′ ∼= IdD, F ′G′ ∼= IdE

が成り立つから、ここから
GG′F ′F ∼= IdC, F ′FGG′ ∼= IdE
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を示せばよい。

G′F ′ ∼= IdD

G′F ′F ∼= F (関手合成の同型の保存)

GG′F ′F ∼= GF (関手合成の同型の保存)

GG′F ′F ∼= IdE (同型の推移律)

同様に F ′FGG′ ∼= IdE も成り立つから、確かに C ≃ Eである。

ここまでで様々な概念の等価性について議論してきたが、それらが一段落ついたため一度整理しようと思う。

上の表は行が各概念の等価性を表していて、列が比較する対象を示している。意識すべきことはある二概念の

圏 C,D 関手 F,G 自然変換 α, β

同一 C = D F = G α = β

同型 C ∼= D F ∼= G

同値 C ≃ D

等価性、例えば C ∼= Dはその右上の等価性 F = Gによって表される。これはすべての欄に当てはまってい

て、例えば圏同値
C ≃ D

は関手の同型である自然同型
FG ∼= IdD, GF ∼= IdC

によって定義されていて、この関手の同型は自然変換の等号

i ◦ i−1 = IDFG, i−1 ◦ i = IDIdD

で定義される。

この表に関手の同値性が存在しないのは、右上の自然変換の同型が存在しないからである。もし自然変換の同

型を考えるのであれば、自然変換と自然変換の間の射が存在し、それの同一性を示すことが可能である必要が

ある。しかし自然変換は圏の射によって構成されいて、自然変換と自然変換の間の射が存在するとしたらそれ

は圏の射と射の間の射が必要になってしまう。

また、Catにおいてはある圏 Cの対象は関手 A : 1 → Cで、射は f : A ⇒ B : 1 → Cで表せるのだった。

そのため一般の圏 Cでの等価性を考えるのであれば、表の右上を切り取れば良い。

対象 A,B 射 f, g

同一 A = B f = g

同型 A ∼= B

7.5 自然変換の普遍性

定自然変換 ∆f : ∆A ⇒ ∆B : C → Dは、圏 Cの任意の対象 C に対して (∆f)C = f となる自然変換で

あった。一方で定関手 ∆Aでも ∆A(C) = Aが成り立つが、この性質は定写像 ∆A : Obj(C) → Obj(D)に
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よって定義されている。定自然変換と違い、関手に対象を適用する操作は対象関数で与えられているが、自然

変換には与えられておらず、自然変換の成分を取る操作は写像によって定義したわけではない。

自然変換を対象によって添え字付けられた射の束、と定義するのでは無く、射集合の何らかの操作によって定

義できると考えたかもしれない。これは実際にエンドと呼ばれる一種の普遍性を用いることで、自然変換を再

定義することができる。

命題 7.5.1（自然変換の普遍性） 圏 C の任意の対象 C に対して Set の射 λC : DC(F,G) → D(FC,GC)

が存在し、Cの任意の射 f : A → B に対して、

D(FA,Gf) ◦ λA = D(Ff,GB) ◦ λB

を満たす。

DC(F,G) D(FA,GA)

D(FB,GB) D(FA,GB)

λA

λB D(FA,Gf)

D(Ff,GB)

またある対象 X に対しても任意の対象 C に対する µC : DC(F,G) → D(FC,GC)が存在し、

D(FA,Gf) ◦ µA = D(Ff,GB) ◦ µB

を満たすのであれば、

X D(FA,GA)

D(FB,GB) D(FA,GB)

µA

µB D(FA,Gf)

D(Ff,GB)

任意の対象 C に対して µC = λC ◦ h を満たすような射 h : X → DC(F,G) が一意に存在する。すなわち、

µC = λC ◦ h′ を満たすような h′ が存在すれば、h′ = hが成り立つ。

DC(F,G)

X

D(FA,GA)

D(FB,GB) D(FA,GB)

λA

h

λB

µA

µB
D(FA,Gf)

D(Ff,GB)

証明 7.5.2 まず任意の対象 C に対する Setの射 λC : DC(F,G) → D(FC,GC)を定義する。

任意の自然変換 α : F ⇒ Gに対して λC(α) = αC とする。任意の自然変換はある対象に対する成分をただ一
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つ持つから、この操作は写像であり、Setの射である。すると、

D(FA,Gf) ◦ λA(α) = D(FA,Gf)(αA) (λの定義)

= Gf ◦ αA (射写像の定義)

D(Ff,GB) ◦ λB(α) = D(Ff,GB)(αB) (λの定義)

= αB ◦ Ff (射写像の定義)

であり、αの自然性から Gf ◦ αA = αB ◦ Ff が成り立つ。よってD(FA,Gf) ◦ λA = D(Ff,GB) ◦ λB を満

たす。

この等式では自然変換の成分が写像で与えられた場合の自然性を射写像を用いて課していることが分かる。

次に射 h の存在と一意性を示そうと思う。そこでまずは任意の対象 X に終対象 1 を当てはめて考える。

射 µC : 1 → D(FC,GC) は射 µA : FA → GA であり、任意の対象 C に対して存在する。更に仮定より

D(FA,Gf) ◦ µA = D(Ff,GB) ◦ µB が成り立つ。

D(FA,Gf) ◦ µA = D(Ff,GB) ◦ µB

D(FA,Gf)(µA) = D(Ff,GB)(µB) (元と終対象からの射の同一視)

Gf ◦ µA = µB ◦ Ff (射写像の定義)

よって自然変換の定義より、µC は対象 C 成分であることが分かる。この自然変換を µ : F ⇒ Gとすると、µ

は DC(F,G)の元である。すなわち µ : 1 → DC(F,G)と表せる。ここで h = µとすると λは成分を取る写

像であったから、µC = λC(µ) = λC ◦ µ = λC ◦ hが成り立つ。

DC(F,G)

1

D(FA,GA)

D(FB,GB) D(FA,GB)

λA

h

λB

µA

µB
D(FA,Gf)

D(Ff,GB)

一意性に関しても、µC = λC ◦ h′ であるような h′ が存在したとしても、µC = h′
C であり、自然変換の定義

から h′ = µ = hが成り立つ。

次に対象 1を任意の対象 X に拡張しよう。X の任意の元 xに対し µC(x)はある自然変換の C 成分である。

上記の議論から自然変換 h(x)C = µC(x)であるため、自然変換 h(x)は任意の xに対して一意に存在するこ

とになる。よって条件を満たす hは存在する。一意性に関しても、h′ : DC(F,G) → D(FA,GA)が存在して

λC ◦ h′ = µC

が成り立ったとしても、任意の元 xに対して

λC ◦ h′(x) = µC(x)

が成り立つから、h′(x) = h(x)となる。よって h = h′ であり、一意性が示せた。
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DC(F,G)

X

1

D(FA,GA)

D(FB,GB) D(FA,GB)

λA

h

x

λB

µA

µB

µA(x)

µB(x)
D(FA,Gf)

D(Ff,GB)

DC(F,G)

1

D(FA,GA)

D(FB,GB) D(FA,GB)

λA

h(x)

λB

µA(x)

µB(x)

D(FA,Gf)

D(Ff,GB)

定義 7.5.3（エンド） ある圏C,Dと、関手 F : Cop ×C→ Dに対するエンド (

∫
C:C

F (C,C), λ)を以下のよ

うに構成する。

楔 楔と呼ばれる組 (X,µ) を以下のように構成する。圏 D の対象である X と圏 C の任意の対

象 C に対して µ : X → T (C,C) なる射が存在して、圏 C の任意の射 f : A → B に対して

F (A, f) ◦ µA = F (f,B) ◦ µB が成り立つとする。

X F (A,A)

F (B,B) F (A,B)

µA

µB F (A, f)

F (f,B)

普遍性 関手 F に対してある楔 (

∫
C:C

F (C,C), λ)がエンドであるとは、他の楔 (X,µ)に対して、µC =

λC ◦ hが成り立つような h : X →
∫
C:C

F (C,C)が一意に存在する時である。

∫
C:C

F (C,C)

X

F (A,A)

F (B,B) F (A,B)

λA

h

λB

µA

µB F (A, f)

F (f,B)

エンドの定義から自然変換の射集合は明らかにエンドである。

命題 7.5.4 DC(F,G) =

∫
C:C

D(FC,GC)

命題 7.5.5（エンドの一意性） 関手 F におけるエンド (

∫
C:C

F (C,C), λ)に対して、同様に関手 F に対するエ

ンド (X,µ)が存在するとする。この時 X ∼=
∫
C:C

F (C,C)が成り立つ。
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証明 7.5.6 (

∫
C:C

F (C,C), λ) と (X,µ) はどちらも F に対する楔であるから、h :

∫
C:C

F (C,C) → X、h−1 :

X →
∫
C:C

F (C,C)なる一意に定まる射が存在する。これらが同型射であることを調べれば良い。

エンドの普遍性より、

µC ◦ (h′ ◦ h) = (µC ◦ h′) ◦ h
= λC ◦ h
= µC

となるが、idX : X → X もまた µC ◦ idX = µC を満たす。すると X のエンドの普遍性により、このような

射は一意に定まるから h′ ◦ h = idX である。

X

∫
C:C

F (C,C)

X

F (C,C)

h

h−1

µC

µC

λC

同様に h ◦ h′ = idであるから X ∼=
∫
C:C

F (C,C)である。

またこの命題の逆もまた成り立つ。

8 極限

定義 8.0.1（極限） ある圏 C,Dと関手 F : C→ Dに対する極限 (limF, ν)を以下のように構成する。

錐 錐と呼ばれる組 (X,µ)を以下のように構成する。圏Dの対象である X と、圏 Cの任意の対象 C

に対して µC : X → FC なる射が存在し、圏 Cの任意の射 f : A → B に対して µB = Ff ◦ µA

が成り立つ。

X

FA FB

µA µB

Ff

またこの対象ごとの射は自然変換で表せる。µ : ∆X → F とすると、対象 C の成分は µC : X →
FC であり、等式 µB = Ff ◦ µA は自然変換の自然性にあたる。
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C

A B
f

D

X

FA FB

µA µB

Ff

∆X

F

µ

普遍性 ある錐 (limF, τ)が極限であるとは、他の錐 (X,µ)に対して、τC = νC ◦ hが成り立つような
h : X → limF が一意に存在する。すなわち自然変換 µは τ によって単なる射 hへと分解される。

また、この時一意に定まる射を ⟨µ⟩ : X → limF と表記することにする。

limF X

FA FB
Ff

⟨µ⟩
limF X

FC

τC µC

⟨µ⟩

この時、limF を極限対象や極限、τC を極限における射影射と呼ぶことにする。

命題 8.0.2（極限の分配則） 極限 (limF, τ)と錐 (X,µ)、射 h : Y → X に対して

⟨µ⟩ ◦ h = ⟨µ ◦∆h⟩

証明 8.0.3 定自然変換の定義より、任意の対象 C に対して (∆h)C = hである。よって自然変換の垂直合成

より
µC ◦ h = µC ◦ (∆h)C = (µ ·∆h)C

よって µC ◦ hは自然変換となるから、⟨µ ·∆h⟩ : Y → limF なる射が一意に存在する。すると ⟨µ⟩ ◦ hもまた

τC ◦ (⟨µ⟩ ◦ h) = µC ◦ h

を満たす。よって射の一意性より、⟨µ⟩ ◦ h = ⟨µ ◦∆h⟩となる。

limF X Y

FC

τC
µC

h ◦ µC

⟨µ⟩ h
limF Y

FC

τC (∆h · µ)C

⟨∆h · µ⟩

命題 8.0.4（極限の一意性） 関手 F に対する極限 (limF, τ)が存在するとする。同様に (X,µ)も関手 F に

対する極限であるならば、limF ∼= X である。

証明 8.0.5 積や終対象の一意性と同様に証明する。
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極限の定義から、⟨µ⟩ : X → limF なる射が一意に存在するが、同時に X も極限対象であるから

⟨τ⟩ : limF → X が一意に存在する。この二つの射が同型射になることを示せば良い。

以下の図式から、τC = τC ◦ ⟨τ⟩ ◦ ⟨µ⟩となる ⟨τ⟩ ◦ ⟨µ⟩は極限の普遍性によって一意に定まるが、同様に恒
等射 idlimF : limF → limF も τC = τC ◦ idlimF であるから、一意性より ⟨τ⟩ ◦ ⟨µ⟩ = idlimF となる。

同様に ⟨µ⟩ ◦ ⟨τ⟩ = idX も示せるから limF ∼= X である。

limF X limF

FC

τC
µC

µC

⟨µ⟩ ⟨τ⟩
limF limF

FC

µC µC

⟨τ⟩ ◦ ⟨µ⟩

定義 8.0.6（完備） 圏Dが完備であるとは、任意の関手 F : C→ Dに対して極限 (limF, τ)を持つことで

ある。

命題 8.0.7（同型の極限の保存） 関手 F : C→ Dに対して limF が F に対する極限対象であり、limF ∼= X

であるならば、X もまた極限対象である。

証明 8.0.8 同型射を i : X → limF, i−1 : limF → X とする。この時極限の分配則より、τC ◦ i : X → FC

について
τC ◦ i = (τ ·∆i)C

が成り立つから τC ◦ iは自然性を満たし、これを用いて錐 (X, τ ·∆i)が定義できる。

次に F に対する任意の錐 (Y, µ)に対して普遍性が成り立つかを調べる。まず極限の普遍性から τC ◦h = µC

なる射 h : Y → limF が一意に存在する。

X が極限であるならば、同様の条件を満たす射が一意に存在する必要があるが、それを i−1 ◦ h : Y → X

とする。すると、
µC = τC ◦ h = τC ◦ i ◦ i−1 ◦ h = (τC ◦ i) ◦ (i−1 ◦ h)

となり、そのような射の存在は示せた。

Y

limF

X

FC

h

i−1

µC

τC ◦ i

τC

Y

X

F (C,C)i−1 ◦ h

µC

τC ◦ i

また µC = (τC ◦ i) ◦ (i−1 ◦ h′)を満たすような射 h′ が存在しても、µC = τC ◦ h′ が直ちに成り立つからエン

ドの普遍性より h = h′ となり、i−1 ◦ h = i−1 ◦ h′ もまた成り立つ。よって i−1 ◦ hが一意に存在することを
示せたから X は極限となる。

命題 8.0.9（極限の関手性） 圏Dが完備であるとする。任意の関手 F : C→ Dに対して極限対象 limF を

得る操作は関手である。すなわち lim : DC → D である。
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証明 8.0.10

対象関数 任意の関手 F : C→ Dに対して対象関数を lim(F ) = limF と定義する。

射関数 任意の自然変換 α : F ⇒ Gに対して、射関数によって写された射 limαを考える。

関手 F,G による極限を (limF, τ), (limG, ν) とすると、極限 (limG, ν) の普遍性より ⟨α · τ⟩ :

limF → limGへの射が一意に存在する。

limFlimG

FCGC

τCνC

αC

⟨α · τ⟩
limG limF

GC

νC αC ◦ τC

⟨α · τ⟩

この射を limαとする。すなわち lim(α) = ⟨α · τ⟩である。

恒等射の保存 lim(IDF ) = idlimF を示せば良い。τC ◦ idlimF = τC であるが、極限の普遍性よりこ

のような射は一意に定まる。よって ⟨τ⟩ = idlimF であり恒等射を保つ。

limFlimF

FCFC

τCτC

(IDF )C

⟨τ⟩
limF limF

FC

τC τC

⟨τ⟩

射の合成の保存 lim(β · α) = limβ ◦ limαを示せば良い。極限 (limF, τ), (limG, ν), (limH,µ)と自

然変換 α : F ⇒ G, β : G ⇒ H に対して、

(β · α)C ◦ τC = µC ◦ limβ ◦ limα

が成り立つが、射関数の定義と射の一意性により lim(β · α) = limβ ◦ limαが成り立つ。

limFlimGlimH

FCGCHC

τCνCµC

αCβC

limαlimβ
limFlimH

FCHC

τCµC

(β · α)C

limβ ◦ limα

極限の関手の中で limαなる射が登場したので、その性質を述べておく

命題 8.0.11（自然変換の極限の適用） 関手 F,G による極限 (limF, τ), (limG, ν) と自然変換 α : F ⇒ G、
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射 ⟨µ⟩ : X → limF に対して
limα ◦ ⟨µ⟩ = ⟨α · µ⟩

証明 8.0.12 射影射 νC による射の分解によって νC ◦ ⟨α · µ⟩ = αC ◦ µC であるから、limα ◦ ⟨µ⟩においても

νC ◦ limα ◦ ⟨µ⟩ = αC ◦ µC

のように分解されれば、射の一意性より等式が成り立つ。よってこれを示せば良い。

νC ◦ (limα ◦ ⟨µ⟩) = νC ◦ ⟨α · τ⟩ ◦ ⟨µ⟩ (極限の射関数の定義)

= αC ◦ τC ◦ ⟨µ⟩ (射影射 ν による分解)

= αC ◦ µC (射影射 τ による分解)

よって limα ◦ ⟨µ⟩ = ⟨α · µ⟩が成り立つ。

XlimFlimG

FCGC

µC

⟨µ⟩

τCνC

αC

limα
limG X

GC

νC αC ◦ µC

⟨α · µ⟩

命題 8.0.13（共変 Hom関手の極限の保存）

D(X, limF ) ∼= limD(X,F−)

が任意の対象 X、任意の関手 F : C→ Dにおいて自然に成り立つ。

証明 8.0.14（同型性） 共変 Hom 関手の積の保存と同様に示す。つまり D(X, limF ) が関手 D(X,F−) :

C→ Setの極限であることを示せば良い。

D(X, limF ) Y

D(X,FC)

D(X,FτC)
µC

⟨µ⟩

またD(X, τC)は、関手D(X,−)と自然変換 τ の水平合成で得られる自然変換であるため、自然性を保つ。

Hom関手の積の保存と同様にまずは Y を 1に制限する。

Set

D(X, limF ) 1

D(X,FC)

D(X, τC)
νC

⟨ν⟩

D

limF X

FC

τC νC

⟨ν⟩
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また圏 Set における ν の自然性と値の適用と元の合成の同値性より、C における ν も自然変換となるか

ら、(X, ν)は Cにおける錐となり、一意に存在する射 ⟨ν⟩ : X → limF が得られる。また A ∼= Set(1, A)か

ら D(X, limF ) ∼= Set(1,D(X, limF ))であり、⟨ν⟩ : 1 → D(X, limF )もまた一意に存在し、値の適用と元

の合成の同値性から図式を可換にする。

1

D(X,FA) D(X,FB)

νA νB

D(X,Ff)

一般の Y に戻ると、Y の任意の元 y に対して極限の分配則より

⟨µ⟩ ◦ y = ⟨µ ·∆y⟩

であったから、任意の元 y に対して ⟨µ⟩ ◦ y : 1 → D(X, limF ) が一意に存在する。よって射 ⟨µ⟩ : Y →
D(X, limF )もまた一意に存在する。

D(X, limF ) Y

1

D(X,FC)

D(X,FτC)
µC

⟨µ⟩

y

µC(y)

⟨µ ·∆y⟩

よって、(D(X, limF ),D(X, τ))は関手 D(X,F−)における極限であり、極限の一意性から D(X, limF ) ∼=
limC(X,F−)である。

二つの極限 (D(X, limF ),D(X, τ))、(limD(X,F−), ν) の間の同型射は極限の一意性による証明によれば、

それぞれ
⟨D(X, τ)⟩ : D(X, limF ) → limD(X,F−)

⟨ν⟩ : limD(X,F−) → D(X, limF )

証明 8.0.15（自然性） まずは X の自然性について考える。二つの極限 (D(X, limF ),D(X, τ))、

(limD(X,F−), ν)と任意の射 f : Y → X に対して、以下の図式が可換になればよい。

D(X, limF )

D(Y, limF )

limD(X,F−)

limD(Y, F−)

D(f, limF ) limD(f, F−)

⟨D(X, τ)⟩

⟨D(Y, τ)⟩
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それぞれ、

⟨D(Y, τ)⟩ ◦D(f, limF ) = ⟨D(Y, τ) ·∆D(f, limF )⟩ (極限の分配則)

= ⟨{D(Y, τC) ◦D(f, limF )}C∈C⟩ (自然変換の垂直合成の定義)

= ⟨{D(f, τC)}C∈C⟩ (双 Hom関手の定義)

= ⟨D(f, τ)⟩ (自然変換の水平合成の定義)

となる。もう一つの射 limD(f, F−) ◦ ⟨D(X, τ)⟩についても、自然変換の極限 limD(f, F−)の適用より、

limD(f, F−) ◦ ⟨D(X, τ)⟩ = ⟨D(f, F−) ·D(X, τ)⟩ (自然変換の極限の適用)

= ⟨{D(f, FC) ◦D(X, τC)}C∈C⟩ (自然変換の水平合成の定義)

limD(f, F−) ◦ ⟨D(X, τ)⟩ = ⟨D(f, F−) ·D(X, τ)⟩

が成り立つ。圏 Cの任意の対象 C に対して、

(D(f, F−) ·D(X, τ))C = D(f, FC) ◦D(X, τC) (自然変換の垂直合成の定義)

= D(f, τC) (双 Hom関手の定義)

= D(f, τ)C (自然変換の水平合成の定義)

よってD(f, F−) ·D(X, τ) = D(f, τ)が成り立つから、

limD(f, F−) ◦ ⟨D(X, τ)⟩ = D(f, τ)

である。よって
⟨D(Y, τ)⟩ ◦D(f, limF ) = D(f, τ) = limD(f, F−) ◦ ⟨D(X, τ)⟩

となり、X に対して自然であることが分かった。

次に F に対する自然性を示す。つまり任意の自然変換 α : F ⇒ Gと二つの極限 (limF, τ)、(limG, ν)に

対して以下の図式が可換であることを示せば良い。

D(X, limF )

D(X, limG)

limD(X,F−)

limD(X,G−)

D(f, limF ) limD(f, F−)

⟨D(X, τ)⟩

⟨D(Y, τ)⟩

自然変換の極限 limD(X,α)の適用より、

limD(X,α) ◦ ⟨D(X, τ)⟩ = ⟨D(X,α) ·D(X, τ)⟩ (極限の分配則)

= ⟨D(X,α · τ)⟩ (相互交換法則)
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同様に極限の分配則より、

⟨D(X, ν)⟩ ◦D(X, limα) = ⟨D(X, ν)⟩ ◦D(X, lim⟨α · τ⟩) (極限関手の射関数の定義)

= ⟨D(X, ν) ·∆D(X, ⟨α · τ⟩)⟩ (極限の分配則)

が成り立つ。ここで圏 Cの任意の対象 C において、

(D(X, ν) ·∆D(X, ⟨α · τ⟩))C = D(X, νC) ◦D(X, ⟨α · τ⟩) (自然変換の垂直合成の定義)

= D(X, νC ◦ ⟨α · τ⟩) (Hom関手の合成の保存)

= D(X, (α · τ)C) (射影射 ν による分解)

= D(X, (α · τ))C

となるからD(X, ν) ·∆D(X, ⟨α · τ⟩) = D(X, (α · τ))となって、

⟨D(X, ν)⟩ ◦D(X, limα) = D(X, (α · τ))

が成り立ち、

limD(X,α) ◦ ⟨D(X, τ)⟩ = D(X, (α · τ)) = ⟨D(X, ν)⟩ ◦D(X, limα)

となるから F に対して自然である。

命題 8.0.16
D(X, limF ) ∼= D

C(∆X,F )

であり、X,F に対して自然である。

証明 8.0.17（同型性） 同型射をそれぞれ

ϕ : D(X, limF ) → D
C(∆X,F )

ϕ−1 : DC(∆X,F ) → D(X, limF )

とし、任意の射 h : X → limF、µ : ∆X ⇒ F に対して、

ϕ(h) = τ ·∆h

ϕ−1(µ) = ⟨µ⟩

と定義する。

ϕ ◦ ϕ−1(µ) = τ ·∆⟨µ⟩であるが、任意の対象 C に対して、

(τ ·∆⟨µ⟩)C = τC ◦ ⟨µ⟩ (自然変換の垂直合成の定義)

= µC (射影射 τ による分解)

であるから τ ·∆⟨µ⟩ = µであり、ϕ ◦ ϕ−1 = idDC(∆X,F )である。
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また、

ϕ−1 ◦ ϕ(h) = ⟨τ ·∆h⟩ (定義による展開)

= ⟨τ⟩ ◦ h (極限の分配則)

= h (極限関手の恒等射の保存)

よって ϕ−1 ◦ ϕ = idD(X, limF )となるからD(X, limF ) ∼= DC(∆X,F )が成り立つ。

証明 8.0.18（自然性） まずは X に対して自然であることを示す。極限 (limF, τ) と射 f : Y → X に対し

て、以下の図式が可換になれば良い。

D(X, limF )

D(Y, limF )

DC(∆X,F )

DC(∆Y,F )

D(f, limF ) DC(∆f,F )

ϕ

ϕ

任意の射 h : X → limF に対して

D
C(∆f,F ) ◦ ϕ(h) = τ ·∆h ·∆f (定義による展開)

= τ ·∆(h ◦ f) (対角関手の合成の保存)

= ϕ ◦D(f, limF )(h) (定義による展開)

よってDC(∆f,F ) ◦ ϕ = ϕ ◦D(f, limF )で X に対して自然である。

次に F に対する自然性を調べる。極限 (limF, τ), (limG, ν)と自然変換 α : F → Gに対して以下の図式が

可換になれば良い。

D(X, limF )

D(X, limG)

DC(∆X,G)

DC(∆X,G)

D(X, limα) DC(∆X,α)

ϕF

ϕG

9 随伴関手

定義 9.0.1（随伴関手） ある二つの関手 L : C → D、R : D → Cが随伴関手であるとは、以下の性質を満

たす時である。

単位と余単位 ある自然変換 η : IdC ⇒ R ◦ Lと ϵ : L ◦R ⇒ IdD が存在する。また η を単位、ϵを余

単位と呼ぶことにする。

三角恒等式 自然変換の二等式
(ϵ ◦ L) · (L ◦ η) = IDL

89



L

L

LRL

IDL

L ◦ η

ϵ ◦ L

(R ◦ ϵ) · (η ◦R) = IDR

R

R

RLR

IDR

η ◦R

L ◦ ϵ

が成り立つ。

また L : C→ Dが左随伴関手、R : D→ Cが対応する右随伴関手である時、L ⊣ Rと表記する

命題 9.0.2（随伴関手の同値な定義） L ⊢ R ⇐⇒ D(LC,D) ∼= C(C,RD)であり C,D に対して自然

証明 9.0.3（=⇒） 任意の対象 C,D に対して、射 ϕ : D(LC,D) → C(C,RD)を

ϕ = C(ηC , RD) ◦RLC,D

と定義する。また逆射として ϕ−1 : C(C,RD) → D(LC,D)を

ϕ−1 = D(LC, ϵD) ◦ LC,RD

と定義する。

D(LC,D)

C(RLC,RD)

D(LC,LRD)

C(C,RD)

RLC,D

ϕ

ϕ−1

C(ηC , RD)

D(LC, ϵD) LC,RD

ただし、RLC,D と LC,RD は関手 R,Lの射関数の成分の一つとする。
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これが実際に同型射になることを示す。任意の射 f : LC → D に対して

(ϕ−1 ◦ ϕ)(f) = ϵD ◦ LRf ◦ LηC (展開)

= f ◦ ϵLC ◦ LηC (η の自然性)

= f ◦ (ϵL · Lη)C (自然変換の水平合成)

= f ◦ (IDL)C (随伴の三角不等式)

= f

同様に任意の射 g : C → RD に対して

(ϕ ◦ ϕ−1)(f) = RϵD ◦RLg ◦ ηC (展開)

= RϵD ◦ ηRD ◦ g (η の自然性)

= (Rϵ · ηR)D ◦ g (自然変換の水平合成)

= (IDR)D ◦ g (随伴の三角不等式)

= g

よって D(LC,D) ∼= C(C,RD) である。次にこの同型の自然性を示そう。また対象 C,D に対する同型射 ϕ

を ϕC,D と表記する。すなわち、f : C ′ → C, g : D → D′ に対して、

C(f,Rg) ◦ ϕC,D = ϕC′,D′ ◦D(Lf, g)

C

C ′

C

D

D′

D

D(LC,D)

D(LC ′, D′)

C(C,RD)

C(C ′, RD′)

Set

f g D(Lf, g) C(f,Rg)

ϕC,D

ϕC′,D′

を示せば良い。任意の射 h : LC → D を適用してそれぞれ展開すると、

(C(f,Rg) ◦ ϕC,D)(h) = Rg ◦Rh ◦ ηC ◦ f
(ϕC′,D′ ◦D(Lf, g))(h) = Rg ◦Rh ◦RLf ◦ ηC′

となるが、η の自然性 ηC ◦ f = RLf ◦ ηC′ により、

C(f,Rg) ◦ ϕC,D = ϕC′,D′ ◦D(Lf, g)

は確かに成り立つ。よってD(LC,D) ∼= C(C,RD)が自然同型であることを示せた。

証明 9.0.4（⇐=）
ηC = ϕC,LC(idLC), ϵD = ϕ−1

RD,D(idRD)

とする。これがそれぞれ単位、余単位になるか調べれば良い。まずはこれらが自然変換であるかを調べる。

任意の C において D(LC,LC) ∼= C(C,RLC) であり、C に対して自然であるから自然同型 DC(L,L) ∼=
CC(Id,RL)が成り立つ。
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